Automatica 180 (2025) 112474

Contents lists available at ScienceDirect
automatica

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

l.)

Check for
updates

Robust data-driven Kalman filtering for unknown linear systems using
maximum likelihood optimization™

Peihu Duan®*!, Tao Liu®?, Yu Xing ¢, Karl Henrik Johansson ¢

4 State Key Laboratory of Environment Characteristics and Effects for Near-Space, Beijing Institute of Technology, Beijing, China
b Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong Special Administrative Region of China
¢School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

ARTICLE INFO ABSTRACT

Article history:

Received 3 December 2023

Received in revised form 23 January 2025
Accepted 27 May 2025

Available online 10 July 2025

This paper investigates the state estimation problem for unknown linear systems subject to both
process and measurement noise. Based on a prior input-output trajectory sampled at a higher
frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust
data-driven Kalman filter (RDKF) that integrates model identification with state estimation for the
unknown system. Specifically, the state estimation problem is formulated as a non-convex maximum
likelihood optimization problem. Then, we slightly modify the optimization problem to get a problem
solvable with a recursive algorithm. Based on the optimal solution to this new problem, the RDKF is
designed, which can estimate the state of a given but unknown state-space model. The performance
gap between the RDKF and the optimal Kalman filter based on known system matrices is quantified
through a sample complexity bound. In particular, when the number of the pre-collected states tends
to infinity, this gap converges to zero. Finally, the effectiveness of the theoretical results is illustrated
by numerical simulations.
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1. Introduction

Due to its ability to estimate states of dynamic systems,
Kalman filtering has attracted tremendous attention since its in-
ception in 1960, which has been widely applied in practice (Auger
et al,, 2013; Kalman, 1960). However, the effectiveness of Kalman
filters is dependent on prior knowledge of system dynamics that
may be unavailable in some practical implementations (Ander-
son & Moore, 2005; Netto & Mili, 2018). To tackle this issue,
some research efforts have been devoted to learning filters from
pre-collected system trajecotries, as described below.

Learning state estimators for unknown systems from pre-
collected system data has been a longstanding topic in the control

* The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Angelo
Alessandri under the direction of Editor Thomas Parisini.

* Corresponding author.

E-mail addresses: duanpeihu@bit.edu.cn (P. Duan), taoliu@eee.hku.hk
(T. Liu), yuxing2@kth.se (Y. Xing), kallej@kth.se (K.H. Johansson).

1 p, Duan is also with State Key Laboratory of CNS/ATM, Beijing Institute of
Technology, Beijing, China, and was with School of Electrical Engineering and
Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.

2 T. Liu is also with the HKU Shenzhen Institute of Research and Innovation,
Shenzhen, China.

3. Xing and KH. Johansson are also affiliated with Digital Futures,
Stockholm, Sweden.

https://doi.org/10.1016/j.automatica.2025.112474

society (Hou & Wang, 2013; Markovsky & Dérfler, 2021; Tsiamis,
Matni, & Pappas, 2020; Xian, Zhao, Wen, & Chen, 2024). According
to designing criteria, there are two paradigms of data-driven state
estimation: indirect data-driven state estimation, also referred to
as system identification-based state estimation (Alanwar, Berndt,
Johansson, & Sandberg, 2022; Revach et al., 2022; Tsiamis et al.,
2020), and direct data-driven state estimation (Liu, Wang, Sun,
Bullo, & Chen, 2024; Mehra, 1970; Shafieezadeh Abadeh, Nguyen,
Kuhn, & Mohajerin Esfahani, 2018; Wolff, Lopez, & Miiller, 2024).
Indirect data-driven state estimation identifies a state-space
model using the pre-collected system data following classical
system identification approaches (Ljung, 1999), and then designs
a state estimator based on the identified model. State-space
linear models (Tsiamis et al., 2020; Xian et al., 2024) and neural
networks (NNs) (Revach et al., 2022) are commonly adopted.
For example, Tsiamis et al. (2020) adopted a subspace iden-
tification approach to identify a state-space linear model and
later proposed both a certainty equivalent and a robust Kalman
filter. Xian et al. (2024) proposed a new model-based exter-
nal disturbance observer to estimate the unknown time-varying
external disturbance, then the optimal coordination problem
was solved using a novel and integrated algorithm architecture.
Revach et al. (2022) trained an NN model to describe a sys-
tem before designing a Kalman filter. Direct data-driven state
estimation designs a state estimator directly from system data
with no intermediate system identification step. This method
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is based on different principles, such as adaptive control the-
ory (Mehra, 1970; Shafieezadeh Abadeh et al., 2018) and Willems’
fundamental lemma (Liu et al., 2024; Wolff et al., 2024). The pio-
neering idea of direct data-driven state estimation can be traced
back to adaptive filtering for cases with unknown noise covari-
ances (Mehra, 1970; Shafieezadeh Abadeh et al., 2018). Recently,
Willems’ fundamental lemma (Willems, Rapisarda, Markovsky, &
De Moor, 2005, Theorem 1), which provides a sufficient condition
under which an input-output trajectory of a linear time-invariant
system can be recovered by a measured input-output trajectory,
contributes to several essential results on direct data-driven fil-
tering (Liu et al., 2024; Wolff et al., 2024). For example, Liu et al.
(2024) and Wolff et al. (2024) leveraged this lemma to design
an explicit observer and an implicit moving horizon estimator
for a state-space linear system with unknown system matrices,
respectively.

The aforementioned data-driven state estimation methods
rely on a prior input-state-output trajectory, where the input,
state, and output should be sampled at the same frequency. How-
ever, in many practical scenarios, the state sampling frequency
is often much lower than that of the input-output trajectory, as
measuring the state may require additional sampling strategies
and extended sampling times, as illustrated in the motivating
example in Section 2. In this case, an unresolved issue is how to
leverage a prior input-output trajectory and a lower-frequency
sampled state trajectory for online state estimation of an un-
known system. Moreover, the impact of data noise on the filtering
performance is not yet fully understood in the literature. For
example, the specific relationship between the magnitude of data
noise and the filtering performance has not been established.
Altogether, designing a filtering method that can estimate the
state of a given state-space model with unknown system matrices
has not well addressed, let along conducting an in-depth analysis
of the filtering performance.

Motivated by the above findings, this paper investigates the
state estimation problem for a linear system with a pre-defined
state but unknown system matrices of the corresponding state-
space model. For this system, we pre-collect an input-output
trajectory at a higher frequency and a state trajectory at a lower
frequency. This paper formulates the modeling and filtering prob-
lem for the unknown linear system as a unified maximum likeli-
hood (ML) optimization problem, the solution to which generates
a novel robust data-driven Kalman filter (RDKF). In comparison
to the literature, this paper possesses several special features as
follows:

(1) The RDKF is developed based on a prior input-output tra-
jectory and a lower-frequency sampled state trajectory,
providing an alternative for state estimation in practical
scenarios where sampling the state at the same frequency
as the input-output trajectory is impractical.

(2) A feasibility condition for the RDKEF is established, demon-
strating that the RDKF is feasible when the prior system
trajectory is sufficiently long, and providing a specific re-
quirement on the trajectory length (Theorem 1).

(3) The filtering performance of the RDKF is ensured. Par-
ticularly, a sample-complexity bound is derived for the
performance gap between the RDKF and the Kalman filter
based on known system matrices, which also quantita-
tively reveals the impact of data noise on the performance
(Theorems 2 and 3).

(4) The RDKEF is further generalized for cases with only a prior
input-output trajectory. In this case, the state estimate cor-
responds to a balanced realization of the system, which can
be applied to control tasks such as LQG control (Corollary
2).
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The remainder of this paper is organized as follows. Section 2
presents the problem formulation. Section 3 introduces a novel
RDKF algorithm. Section 4 analyzes the necessary informativ-
ity of the pre-collected data required for performing the RDKF.
Section 5 evaluates the filtering performance of the RDKF. The
theoretical results are illustrated in Section 6. Section 7 concludes
the paper.

Notations. Let R" denote the real coordinate space of dimen-
sion n. Let ® denote the Kronecker product. Let I, denote the
n-order identity matrix. Let 0 denote a scalar, vector, or matrix
of an appropriate dimension with all elements being zero. Let
N* be the set of positive integers and N = N* U 0. For any
given vector u and positive definite matrix X' with appropriate
dimensions, let N (, X') denote Gaussian distribution with mean
w and covariance X. For any positive function f, let Inf denote its
natural logarithm. For any matrix S, S(m; : my; ny : ny) denotes
the block matrix in S with elements Sj, my < i < myp, n; <
j < ny; ST denotes its right/left inverse if it has full row/column
rank. For a square matrix S, |S| denotes its determinant; A(S)
denotes the set of its eigenvalues; Amax(S)/Amin(S) denotes its
maximum/minimum eigenvalue if S is positive definite.

2. Problem formulation
2.1. System model

This paper considers a class of linear systems:

Xip1 = Axy + Bug + wy,

1
Yk = Cxx + vy, keN, M

where x, € R", u, € R™ and y, € RP denote the system
state, input, and output at time step k, respectively; A € R™",
B € R™™ and C € RP*" are unknown system state, input,
and output matrices, respectively; w, € R" ~ A(0, Q) and
v € RP ~ A0, R) are the system process and measurement
noise with Q € R™" > 0 and R € RP*P > 0, respectively. The
initial system state is denoted by xq ~ N(Xp, Pp) with X € R"
and Py € R™" > 0. We assume that xg, wy, and v, Vk € N, are
mutually uncorrelated.

Assumption 1. (C, A) is observable.

2.2. Data collection

Suppose that we can pre-collect an input-state-output tra-
jectory of (1), as shown in Fig. 1(a) , where the state sampling
frequency is lower than the input and output sampling frequency.
To be more specific, the sampled state sequence is denoted by

YR A R T 4T
X=X, Xiys Xiegs «- o5 kaH] , (2)

where the superscript ‘p’ denotes the pre-collected data. Then, let
L=k —k,ieV2{12 ..., N} Without loss of generality,
we assume that there exists a constant scalar L such that L; > L,
Vie V. If L; < L for some i € V, we can omit the sampled state
Xk, and retain the next sampled state until the condition L; > L
is satisfied. This assumption is practical, particularly when the
state sampling frequency is much lower than the input-output
sampling frequency. Next, we divided the input-output trajectory
into N segments and then extracted the first L points from each
segment, as

ip __ T T
wr =g, Ugyqs -

ip_ T T
VP =W Yiggr -

T T
s Uil

T T
’ y’(,'+l.] ’
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(a) The pre-collected input-state-output trajectory.
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(b) The online input-state-output trajectory.

Fig. 1. The pre-collected and online system trajectories, where red, yellow, and blue solid dots denote the state, input, and output, respectively. In Fig. (a), the states
are sampled at time instants ky, ks, ..., ky+1, and the inputs and outputs are sampled at every time instant from k; to ky.. This paper aims to estimate the online
state at every time instant, using the pre-collected input-state-output trajectory and the online input-output trajectory. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

where i € V denotes the ith segment. The augmented input and
output data of all segments are denoted by

uP =[P, ..., @V,
y=1"), . v

Let P and vP denote the corresponding process and measure-
ment noise, respectively. Further, we define the following nota-
tions

(3)

UL, ..., uvr], yeye, o YNy
22", ..., VP, veptr NP (4)
X2 Xy ooy Xyl
It follows from (1) that
Y=GX+FU+HQ+V, (5)
where F = H(I; ® B),

C 0 0 - 0

CA C 0 0
G— CA? . H= CA C 0

cat Al A L. C

Assumption 2. L > max{n, m, p}.

Remark 1. The conditions L > m and L > p are assumed only
for notational simplicity, while the condition L > n is assumed to
ensure the observability matrix has full column rank (Chen, 1984,
Theorem 6.DO1).

Assumption 3. rank[ i(] ] =n+Lm.

Motivating Example: Continuous stirred-tank reactors (CSTRs)
play a crucial role in industrial processes, particularly in chemical
production and reaction engineering. State monitoring of CSTRs
is essential for ensuring process efficiency, maintaining product
quality, and preventing safety hazards. According to Bequette
(2003), a CSTR for an exothermic reaction can be described by:

Ch= L(cr = Ca) = koe ( E)c
— L — ) — koexp( ==,
A= T AT KoXD( = o )EA

. ko AH E UAT. — T
f=dm-1-X exp(——)q\ UAT = T)
v oG, RT VoG,

where C5 € R is the reactant concentration; T € R is the reactor
temperature that can be measured; T. € R is the temperature of
the coolant stream that can be manipulated; and see Bequette
(2003) for the definitions of other parameters. Note that the
nominal operating setpoint of the CSTR corresponds to a steady
state C5, TS, and T?. By letting x = [Ca — C5, T —T%]", u = T,
and y = T be the state, input, and output vectors, the dynamics
of the CSTR near the nominal operating setpoint can be modeled

’

as (1) (Bequette, 2003), where A € R?>*? and B € R? are unknown
system matrices. For this system, we can pre-collect an input-
state-output trajectory. Specifically, we can measure temperature
using sensors at a minute-level frequency, and measure reactant
concentration through chemical analysis methods usually at an
hourly frequency (Bequette, 2003). By doing so, we obtain a
higher-frequency sampled input-output trajectory, denoted by
uP and yP, and a lower-frequency sampled state trajectory, de-
noted by xP. The objective is to estimate the online reactant
concentration using the pre-collected system trajectory.

This paper focuses on state estimation for a predefined state
of an unknown system, as shown in the example above, requiring
prior data related to this state. This differs from subspace identi-
fication or Willems’ fundamental lemma-based control (Adachi &
Wakasa, 2021; Coulson, Lygeros, & Dorfler, 2019; Oymak & Ozay,
2019; Turan & Ferrari-Trecate, 2021), which relies only on input-
output data and does not require a specific state-space model.
We will also generalize the results to cases without prior state
information, applicable to control tasks such as LQG control.

2.3. Problem statement

The objective of this paper is to estimate an online state
trajectory of (1) based on the pre-collected data {uP, xP, y*}. The
online trajectory is described by

a T T TT
U, = [Ug, Uy, -.., Wl ,

T ToqT

Xo.k+1 £ X, Xp5 oy Xigql's (6)
T o.T T 4T

Yivks1 = 1. Y20 oo Yigql's keEN,

where g i and y[1.14+17 are known, as shown in Fig. 1(b).

Problem: For system (1) with unknown A, B, and C, design
a filtering algorithm to estimate the state xjo x+1) defined in (6),
using {uP, xP, yP} and {upo k), ¥(1.k+17}, defined in (2), (3), and (6),
respectively, as

o, kr11 = Zkr1(Upo.kps Vit k1), UP, VP, XE), k € N, (7)

where X1y = [X),.... %[, ;]" denotes the estimate of the
online xjo x+1; that corresponds to (1), and g,1(-) denotes the
filtering algorithm. Moreover, the filtering performance should
be quantitatively analyzed and compared with the Kalman filter
based on known matrices A, B, and C.

3. RDKF design

In this section, we provide a framework for estimating the
state in (6) using the pre-collected data {uP, xP, yP}. Let x, y, and y?
be the random variables of X(g 41}, ¥[1.k+1, and yP, respectively.
Then, we define a joint probability density function of Xjo k1],
Yitk+1), and yP:

Fxyyp Rok+11 Yt k+11 YP)
£ Fryyp(x= ?AC[O,I<+1J, Y =Yik+115 yP =yP).
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Lemma 1. For system (1), the joint probability density function
Fxyy?(Rio.k+11 Yi1,k411, YP) is equivalent to

SxyypRio,k+11 V11,411, ¥P) = constant X forr X fon,

where
N L-1
fofle_[]_[exp( yQ! ”)
i=1 h=0

N oL
1
XHHGXP<_5(VDTR 1v;1),

i=1 h=0
and

1.
fon = eXp(—i(xO —X0)" Py (Ro — xo))

k
1 1
ATA—1~ AT p—1n

X ex(—wa w; — =V, R v1),

1_[ p 5@ £~ 5V t+

t=0
&)[O,k'] S [&)g, ey &)};]T and ﬁ[1,k+1] 2 [\’){, . 13’5+1]T are vari-
ables to approximate the system process and measurement noise,
respectively, satisfying

)/z[_'.] - A)A([ + But + C’(\)t,

et (8)
Ve=Cx+1v, t=0,1,..., k+1,

and

o =[@"), ..., (@), & = [(@p), ..., @),

P =[O, ..., (M7, B =B, ..., (BT,

are variables with their elements satisfying
h

Yign = CA"xi + Y " A (Buj_ + &) + D, 9)
I=1

forallh=1,...,L and y, = Cxy, + D).

The proof of Lemma 1 is given in the online version (Duan, Liu,
Xing, & Johansson, 2024). According to Rauch, Tung, and Striebel
(1965), when the system matrices A, B, and C are known, the
minimum mean-square error (MMSE) state estimate for (1) is the
optimal solution to an ML optimization problem. In this paper,
we consequently perform state estimation for (1) by instead
maximizing the likelihood function derived in Lemma 1, i.e.,

min — Infoir — Infon
Xg.@P, 0P, I
D[0k1-[1, k4 1] (Peg1)
s.t. (8) and (9).

Let X5, @ 4p» U ka1 @, and DP* denote the solution to Py ;. Let
Xowrn =[G &), ..., (%,,)"]" denote the state evolution of
(8) given these optimal variables.

Note that the optimization problem P}c 1 is nonlinear and non-
convex, and cannot be solved in general. We slightly modify 77,’< +1
to get a problem solvable with a recursive algorithm and with
a solution close to the optimal one with known A, B, and C.
Specifically, we modify Pj, , as

min max — Infy,
X.d0k):  @PeBey ("),
ML+ DPeBe, (P (Pk+1)
s.t. (8),

with B, (&%) = {&P| &P — &P [l2 < €1} and B, (3") = (DP|[|0P —
PPl < €2}, where @P* and DP* are solution to

mm — Infor, .t (9), il
mir foff 9) (P

Automatica 180 (2025) 112474

Algorithm 1 RDKF

Input: U, Y, X, u, and y, defined in (4) and (6);
Output: X, k € N;
1: compute matrices

Ay :G G2, By = G 4635, G =0Gays (10)
with

Gy =2Z(1:Lp;1:n),

Gy =Z(p+1:ILp+p;1:n),
Gss=Z(p+1:Lp+p;n+1:2n),

G4qﬂ = GLn(] D, 127'[), ZT: = Y([XT, UT]T)T;
2: fork=0,1,...do

(11)

Rl = Ay + B,

Rirtr = Rer1p + Lt s — GeRirape),
Lis1 = Per1CL (R + GePa G) 77, (12)
Pep1 = AsPAT + Q.

Pk+1 = 13k+1 —I_)k+1él<r(i2 + 6k1_)k+lékT)_

where the filter parameters are defined as

.
CiPrey1,

Av=A,(I — Ay 2eDy), By=B; — My2ePy, Ci=GC;,
R=R—217'eC,C], P=(P; " + ryiel)™

X1 Is the estimate of X in (6), Xo = X, A is any scalar
greater than [|eC/R™'C; 1; and ya, ¥, and € are given in (19).
3: end for

and ¢; and ¢, are the upper bounds of ||wP—&P"||; and ||[VP—DP"||5,
respectively.

To solve P,ﬂ’H, we propose the RDKF algorithm. Let us explain
the main stages of the algorithm. First, when regarding A, B, and C
as unknown variables, the optimal solution to 7] can be directly
derived as @ = 0 and v? = 0. Then, if Assumption 3 holds,
substituting the solution into (9) gives

Z; 2 (G, Fl=Y(X", U, (13)

where Y, X, and U are given in (5), and G; and F; are the estimates
of G and F, respectively. Let A;, B;, and C; be the estimates of A,
B, and C, respectively. We assume that G; and F,; have the same
structures with respect to A;, B; and C; as G and F have with
respect to A, B and C, respectively. Hence, the following equations

GLI:AI-‘I = Gz’n, Gl,ﬁBﬁ = Gg’u, Cj = G1.j(] .m; 1: n),

hold. If Gy has full column rank, we obtain 10. When there
exist positive scalars v, ¥, and € such that ||A — A ll; < Yqe,
IB—Bsll2 < e, and [|C—Cyll2 < €, Py, can be slightly modified
as
SN
VORI 1 e IAc Ty <e
St Xep1 = (As + Aa)Re + (Bs + Ap)u; + &y,
,Vt=(Cn+AC)&[+\’>[, t=0,],...,k—|—].
By utilizing the regularized least-squares method in Sayed (2001),

an explicit solution to the above optimization problem is derived
as 12 in Algorithm 1.

_lnfon

Remark 2. Maximum likelihood estimation is a fundamental
principle for state estimation, e.g., in switching (Alessandri, Bagli-
etto, & Battistelli, 2010), time-varying (Poncela, Poncela, & Peran,
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2013), and nonlinear systems (Marelli, Fu, & Ninness, 2015). This
paper employs this principle to deal with state estimation of
unknown systems, where the new likelihood function derived in
Lemma 1 incorporates both the pre-collected data and the online
measurements.

When no prior state can be collected, the RDKF can be directly
extended to estimate the state of a balanced realization, applica-
ble to control tasks like LQG control. To move on, we restack U
and Y in (4) by replacing L with 2L, and modify Assumption 3 as

Assumption 4. rank(U) = 2Lm.

Similarly to system identification (Tsiamis et al., 2020; Zheng
& Li, 2020), we assume the initial state of pre-collected input-
output trajectory (3) to be either zero or unknown zero-mean
random noise. In this case, the RDKF proposed in Algorithm 1
remains valid, except that Z; in 11 is replaced by

Z =[G F)*(1: Lp+p; 1: Lm)], F}*" = YU,

S
G = Usz), FRer == (U U;][ 2 5, ][ “;15 ] (14)

where F“e"" is the Hankel form of F*" (Oymak & Ozay, 2019;
Tsiamis & Pappas, 2019); “SVD” denotes the singular value de-
composition; X; € R™" contains the n-largest singular values.
Let us explain the derivation process of the new result as follows.
Similarly to cases with prior states, we still solve P,ﬂ’ to design the
RDKEF for cases without prior states. In the new case, (13) reduces
to FY = YUT, where F/€" is the estimate of F. Note that F is a
block-Toeplitz matrix, which can be reshaped as a Hankel matrix
Fy satisfying Fy = GGg, where G is the observability matrix and
Gp is the controllability matrix (Tsiamis & Pappas, 2019, Section
3). Hence, we can reshape FnneW to get a Hankel matrix FﬁneW By
taking the SVD of F“e"" the controllability matrix of a balanced
realization can be derlved as G;*" in (14). As a result, Z; in 11
is replaced by ZJ*" in (14), while the other steps in Algorithm 1
remain valid.

4. Data informativity analysis

This section is aimed at analyzing the informativity of the pre-
collected data required for performing the RDKF. Similarly to (13),
let Z £ [G F], and e; = Z; — Z be the error between Z and Z;. It
follows from (5) that

o[]S o

which is obtained by substituting the explicit expression of
(X", UTI™)'. Similarly to Tsiamis et al. (2020), we assume that
the system is stable and L; > L. In the experiments of generating
data, let uj ~ AN(0, S) with S € R™™ > 0. In this case,
Xy, is a Gaussian variable, and we denote x;, ~ N/(0, Py) with
Py € R™" > 0. When L; > L and the system state matrix A
is stable, it is reasonable to assume that uﬁl and x, are mutually
uncorrelated, Vh = ki, ki +1, ..., ki+L—1,Vie V.LetQ = af,ln,
R = o2l P; = ngln' S = 02y, and P, = oI, for notational
simplicity.

Proposition 1. Consider system (1) with the collected data U,
Y, and X defined in (4). Suppose Assumption 3 holds. If N >
321%log(27/8), then |lez|l, < O(J/1/N) holds with probability at
least 1 — § with § € (0, 1).

The proof of Proposition 1 is given in Appendix A.1. Let Gy,
G,, and Gs represent the corresponding block matrices in Z as
Gi4, G, and Gsp in Z;, respectively, where G; 4, Gy ¢, and Gs 4
are defined in Algorithm 1. Subsequently, we have the following
corollary.
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Corollary 1. Consider system (1) with the pre-collected data U, Y,
and X, defined in (4). Suppose Assumption 3 holds. For any scalars
€ € (0, 1) and 6 € (0, 1), there always exists a positive integer
No(e, 8) such that if N > Ng(e, 8), then

IGi — Giella <€, G2 —Golla <€, Gz —Gsyll2 <,

hold with probability at least 1 — 4.

From the proof of Proposition 1, one feasible Ny(e, §) is given
by

No(e, 8) = 32L%log(27/8) x max({1, 2MZ/e* + 2a3}, (16)
where M is a positive constant defined as
Mz = a0l Gz ll2 + Bos (17)

with ag = UmaxawL/ammv Bo = Umaxau/gmmv Omax = Max{oyx, oy},
and opin = min{oy, oy }. The above result reveals an explicit rela-
tion between the estimation error bound € and the number of the
pre-collected states N. Based on Corollary 1, we can determine
the number N required for ensuring the full column rank of Gy ;
for performing the proposed RDKF.

Theorem 1. Suppose Assumptions 1, 2 and 3 hold. If N > Ny(e, 8)
and € < €y, where Ny(¢, 8) is defined in (16) and €, is defined as

€0 2 \/IG1 12 + min(C1G1) = Gyl (18)
then Gy 4 has full column rank with probability at least 1 — 8.

Theorem 1 is proved in Appendix A.2. Theorem 1 reveals that
Gy has full column rank with any high probability if conditions
in Theorem 1 are met.

5. RDKF performance evaluation

This section presents the performance gap between the pro-
posed RDKF and the optimal Kalman filter based on known sys-
tem matrices.

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. When
N > Ng(e,8) and € < ¢€g with Ny(e, §) and €y being defined in
(16) and (18), respectively, then

A —Agllz < ¥a€, |IB—Bsll2 < ¥rpe,

simultaneously hold with probability at least 1 — §, where 4 and
Y are positive constants defined in (19).

I€—=Glla <,

Theorem 2 is proved in Appendix A.3. Theorem 2 offers the
upper bounds for the estimation errors of system matrices. Con-
sidering a given N > Ly £ 321°10g(27/8), it follows from (16) and
the proof of Theorem 2 that the values of €, ¥4, and ¥ is given
by

€= \/ 2MZLy /(N — 20Lo),
Ya = 1G] l201Az 12 + 1D/(1 = 1G] ell2), (19)
v = (1G] I12(IB:ll2 + 1)/(1 = [IG] €ll2).

which are used for the RDKF presented in Algorithm 1.

According to Theorems 1 and 2, Gy 4 has full column rank with
probability at least 1 — § when N > No(e, §) and € < €. Hence,
(C, A;) is observable (Chen, 1984, Theorem 6.D01). Further, Py,
Py, and Py in 12 exponentially converge to the unique solution
to Sayed (2001)

P, = (P7' +2y7e)!, Py =Anf’t/“,§ +Q,

B _ p.T(p B T\-1, 5 (20)
P, = P, — P.C](R+ C:P,C])'C.P;,
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with probability at least 1 —§ when N > Ny(€, §) and € < €p. We
assume that the filter parameters in 12 are in their steady states
for notational simplicity. In addition, the steady-state Kalman
filter for (1) with known A, B, and C is given by Anderson and
Moore (2005)

X1k = ARy + Buy,
X1 = Repe + Lka1 — CRig1i)s
L=PC"(R+cPc)™, (21)
P =APA" +Q,
P =P —PC"(R+CPCT)"'CP,
where Xii 1 and X.q are the a priori and a posteriori MMSE
estimates, respectively; and L, P, and P are filter parameters.

Further, an assumption on the state x; is needed, which holds for
many systems with closed-loop controllers.

Assumption 5. There exists a positive definite matrix I7 such
that E{x,xI} < I1, Vk € N.

Let e, = X, — x; be the estimation error of the RDKF at step
k, and P, = E{ekeg}. A result about the filtering performance of
the proposed RDKEF is given as follows.

Theorem 3. Consider system (1) with the pre-collected data U, Y,
and X, defined in (4). Suppose Assumptions 1, 2, 3, and 5 hold. When
N > Ny(e€, 8) and € < €g with Ny(e, 8) and €y being defined in (16)
and (18), respectively, then

[Pe.oc — Pll2 < O(v/1/N),
holds with probability at least 1 — 4.

A brief outline of the proof for Theorem 3 is given below. First,
it follows from Theorem 2 and (20) that

IA — All2, IB = Bli2, IC — Cliz, IR = Rll2, IIP; — Pyl2,

are upper bounded by O(4/1/N) with probability at least 1 — §.
In the following, the proof process is divided into five steps by
considering five cases: ) .

Case (1): B~ Bl = II€ — Cll = [R—Rll> = [IP; — B[l = .

Case (2): IC = Cllz = [R—Rll2 = IP; = P¢ll2 = 0;

Case (3): IR —R|lz = [IP; — Ps]l2 = 0;

Case (4): ||P; — P:|l, = 0;

Case (5): The original case in Theorem 3.

To distinguish, let P,  in Cases 1-5 be P, _ -P; _, respectively.
By leveraging the uniform boundedness of filter parameters in
each case, we can prove that [P, . —P|l2, [P? , — P . ll2. IP2 o —
P? ll2, 1P} — P2 ll2, and [|P;  — P; _|l2 are upper bounded
by O(4/1/N). Hence, we have ||P65,oo — Pl < O(J/1/N), as stated
in Theorem 3. A complete proof of Theorem 3 is available in the
online version (Duan et al., 2024).

If no prior state is available, as derived in Section 3, we modify
Algorithm 1 by replacing Z; in 11 with Z*" in (14). In this
case, the state estimate corresponds to a balanced realization,
which can be used for control tasks like LQG control. Similarly to
Theorem 2, we can also derive sample-complexity upper bounds
for the learning errors of A, B, C. By denoting P in (21) for this
case as P,, we have the following corollary.

Corollary 2. Consider system (1) with the pre-collected data U
and Y defined in (4). Suppose Assumptions 1, 2, 4, and 5 hold. In
addition, Z; in Algorithm 1 is replaced with Z}*" in (14). For any
scalars € € (0, 1) and § € (0, 1), there always exists a positive
integer No(e, 8) such that if N > Ny(¢, 8), then

”Pe,oo - Pb”z = O(\/ 1/N)a

holds with probability at least 1 — 6.
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Fig. 2. The values of AMSE under different numbers of samples and magnitudes
of noise using the proposed RDKF, where the number N is set as 10, 20, ..., 190,
respectively.

Remark 3. Corollary 2 reveals that the designed RDKF can
be adapted for cases where prior states are unavailable, while
ensuring a sample complexity bound for the filtering perfor-
mance. In particular, we introduce a novel approach that uses
the estimation error covariance as the metric for the sample
complexity analysis. This metric offers an intuitive assessment of
the performance gap between the proposed RDKF and the optimal
Kalman filter based on known system matrices.

6. Simulation

In this section, the effectiveness of the proposed RDKF is
illustrated using a simulation of a CSTR (Bequette, 2003). The
dynamics of the CSTR is described by a linear state-space model,
see Section 2.2. Similarly to Bequette (2003), consider that the
nominal operating setpoint of the CSTR corresponds to a steady
state C° = 0.5 mol/l, T° = 350 K, and T{ = 300 K. Let x =
[CA—C5, T—T]",u =T, and y = T be the state, input, and
output vectors. By utilizing a sampling time of t; = 0.1 min, the
dynamics of the CSTR is modeled as (1) (Sui, Johansen, & Feng,
2010) with

A [ 0.7776

26.6186

—0.0045 B— —0.0004
1.8555 e 0.2907

i|,C:[0 1].

Let 0, = 0.01 and o, = 0.1. Assume that the above matrices A
and B are unknown. Suppose that we can collect an input-state-
output sequence uP, xP, and yP defined in (2) and (3), where the
parameters are chosen as N = 100, L = 5, o, = 0.4, and 0, = 2.
Based on these data, we apply the proposed RDKF to estimate an
online trajectory of the CSTR with xo = [0.4, 5]" and u; = —8y;.
To proceed, two types of errors are defined:

50 N¢

1 . 1

MSE(h) = = § [l X! — XI||2, AMSE = N § MSE(h),
k=1 £ =1

where the notation h denotes the hth trial, and N; = 200 denotes
the number of Monte Carlo trials.

The filtering performance of the CSTR by the designed RDKF is
illustrated in Figs. 2 and 3. Fig. 2 illustrates that the filtering per-
formance of the proposed RDKF is improved with an increasing
number of samples, which coincides with Theorem 3. More-
over, it also shows that the smaller noise magnitudes leads to
a better filtering performance. In addition, four relevant filtering
methods in the literature are included for comparison, namely
the model-based Kalman filter using known system matrices
(MBKF) (Anderson & Moore, 2005), system identification-based
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Fig. 3. The values of MSE of 200 Monte Carlo trials using different filtering
methods, where the red solid line and the blue dotted line denote the median
and mean, respectively; the tops and bottoms of each box represent the 25th
and 75th percentiles, respectively; and black circles denote outliers beyond 1.5
times the interquartile range.

Kalman filter (SIKF) (Verhaegen & Verdult, 2007), Willems’ fun-
damental lemma-based state estimator (FLSE) (Liu et al., 2024),
and NNs-based Kalman filter (NNKF) (Revach et al., 2022). It is
worth mentioning that the SIKF, FLSE, and NNKF use a prior
state trajectory sampled at every time step, whereas the RDKF
employs a lower-frequency sampled state trajectory. Even so, it
is shown in Fig. 3 that the RDKF demonstrates better filtering
performance and superior capability in handling noisy data. The
above observations illustrate the theoretical results obtained in
this paper.

7. Conclusion

This paper proposed a new RDKF for a class of unknown
linear systems, where a prior input-output trajectory sampled
at a higher frequency and a prior state trajectory sampled at a
lower frequency are available. Specifically, an ML optimization
problem has been formulated and solved to construct the state
estimate. A sample-complexity upper bound has been derived for
the performance gap between the designed RDKF and the Kalman
filter with known system parameters. Simulations have demon-
strated the effectiveness of the theoretical results. In the future,
we will further explore data-driven unknown input observers,
leveraging the solid theoretical foundation laid by Lv, Li, and
Duan (2024), which presented an innovative and practically ap-
plicable framework for minimal-order fixed-time unknown input
observers.
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Appendix

A.1. Proof of Proposition 1

First, according to (15), it can be directly derived that

llezll> < (IHRIX", UMl + IVIXT, UTTI12)
x (X UTIXT Ut . (22)

In the following, the three terms on the right side of (22) are
analyzed. For the first term, with probability at least 1 — §/3,

IHRIX", UT]ll2 < [HI212(X", U"]];
< 4||H 1200 max/N(n + Ln + Lm)log(27/3),
holds when N > 2(n 4 Ln 4+ Lm)log(4/3), where omax = max {oy,
o, } and the second “<” is derived using Lemma 1 in Dean, Mania,

Matni, Recht, and Tu (2020), Zheng and Li (2020). Similarly, the
second term

[vix™. um|,
< 40,0maxy/N(n 4 p + Lp + Lm)log(27/5),

holds with probability at least 1 —§/3 when N > 2(n+p+Lp +
Lm)log(3/8). By applying Lemma 2 in Dean et al. (2020), Zheng
and Li (2020), the last term

Vamin(IXT, UTIT[XT, UT])
> amm(\FN —Jn+Llm- \/Zlog(3/5)) > %ammﬁ,

holds with probability at least 1 — §/3, where o, = min {oy,
oy}, and the second “>" holds when N > 8(n+ Lm)+ 16log(3/4).
Hence, the last term on the right side of (22) can be relaxed as

IOXT, UM IXT, ™)~ < 4/(No

min)'

Using the union bound, it can be derived that

lezll2 < Mz+/10g(27/5)/N,

holds with probability at least 1—8§ when N > 8(n+Lm)+2(Lp+
Lm+Ln+p+n+3)log(3/5), where My is a constant defined below
(16), and Assumption 2 is used such that 2n + Lm < L(2 4+ m),
n+In+Lm<L(14+n+m)and n+p—+Lp+Lm < L(1+42p+m).
Noting that we have log(10/§) > 1, the condition N > 8(n+Lm)+
2(Lp + Lm + Ln + p 4+ n + 3)log(3/8) can be further relaxed as
N > 32I%log(10/68). Now, the proof of Proposition 1 is complete.

A.2. Proof of Theorem 1

First of all, note that
GiG1 — G} Gy
= (G1 — G14)"G1 + [(G1; — G1) + G11"(G1 — Gup)
< 1G1 = Gigll2IG1ll2ln + (IG1,s — Gill2 + 11G1ll2)
x |G1,3 — Gill2Iy.

Then, it follows from Corollary 1 that, with probability at least
1-8,GG1—G! .Gy < €l,+2€(|Gy 2], holds, when N > Ny(e, §).
Further, we have

Amin(G} Gy <G1G1 = GGy — G} .G + G .Gy
<€’ + 2€||Gill2ly + G} .Gy 2.

Besides, according to Chen (1984, Theorem 6.DO1), GfG1 > 0
when Assumptions 1 and 2 hold, which indicates kmin(GgGl) >0
holds. All together, with probability at least 1 — §, G?tcw >

[xmin(G{cl) —e 2e||cl||2]1n ~ 0 holds, when N > Ny(e, 8)

and € < ,/[G1/|3 + Amin(G]G1) — ||G1 2. This ensures that Gy ; has
full column rank.
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A.3. Proof of Theorem 2

It follows from (5) that
A—A; = (G} — G )G1A+ G (G — Ga.2)
= GJ{,n(GLﬁ —GA+ Gh(cz —Gyz),
where the last “=" is based on thm = GIG1 = I,. According to
the results revealed in Corollary 1, [[A—A; |, < ||G;r,ﬁ||2(||A||2+1)e

holds when N > Ny(e, §) with € < ¢ in (16). Since G;ﬁ =
(G1.,G1.4)7"G] ,, we have

1G] 12 = y/Amax (G076 ) =\ hamax (G} (G,
= \/)\max((c-{,ﬁcl,u)_q = \/l/kmin(G-{,nG],n)
</ 1/0min(G1G1) — € = 2¢(Gi 1),

Hence, ||A||2||Gh||z + IIGhllz is uniformly bounded. Similarly,
with probability at least 1 — 4,

IB— Byll> < 1G], I12(1IBll2 + e,

and ||C — Gapll2 < IG; — Gigllz < € hold. Hence, Theorem 2 is
proved.
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