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 a b s t r a c t

This paper investigates the state estimation problem for unknown linear systems subject to both 
process and measurement noise. Based on a prior input–output trajectory sampled at a higher 
frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust 
data-driven Kalman filter (RDKF) that integrates model identification with state estimation for the 
unknown system. Specifically, the state estimation problem is formulated as a non-convex maximum 
likelihood optimization problem. Then, we slightly modify the optimization problem to get a problem 
solvable with a recursive algorithm. Based on the optimal solution to this new problem, the RDKF is 
designed, which can estimate the state of a given but unknown state-space model. The performance 
gap between the RDKF and the optimal Kalman filter based on known system matrices is quantified 
through a sample complexity bound. In particular, when the number of the pre-collected states tends 
to infinity, this gap converges to zero. Finally, the effectiveness of the theoretical results is illustrated 
by numerical simulations.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Due to its ability to estimate states of dynamic systems, 
Kalman filtering has attracted tremendous attention since its in-
ception in 1960, which has been widely applied in practice (Auger 
et al., 2013; Kalman, 1960). However, the effectiveness of Kalman 
filters is dependent on prior knowledge of system dynamics that 
may be unavailable in some practical implementations (Ander-
son & Moore, 2005; Netto & Mili, 2018). To tackle this issue, 
some research efforts have been devoted to learning filters from 
pre-collected system trajecotries, as described below.

Learning state estimators for unknown systems from pre-
collected system data has been a longstanding topic in the control 

I The material in this paper was not presented at any conference. This paper 
was recommended for publication in revised form by Associate Editor Angelo 
Alessandri under the direction of Editor Thomas Parisini.

∗ Corresponding author.
E-mail addresses: duanpeihu@bit.edu.cn (P. Duan), taoliu@eee.hku.hk 

(T. Liu), yuxing2@kth.se (Y. Xing), kallej@kth.se (K.H. Johansson).
1 P. Duan is also with State Key Laboratory of CNS/ATM, Beijing Institute of 

Technology, Beijing, China, and was with School of Electrical Engineering and 
Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
2 T. Liu is also with the HKU Shenzhen Institute of Research and Innovation, 

Shenzhen, China.
3 Y. Xing and K.H. Johansson are also affiliated with Digital Futures, 

Stockholm, Sweden.
https://doi.org/10.1016/j.automatica.2025.112474
0005-1098/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
society (Hou & Wang, 2013; Markovsky & Dörfler, 2021; Tsiamis, 
Matni, & Pappas, 2020; Xian, Zhao, Wen, & Chen, 2024). According 
to designing criteria, there are two paradigms of data-driven state 
estimation: indirect data-driven state estimation, also referred to 
as system identification-based state estimation (Alanwar, Berndt, 
Johansson, & Sandberg, 2022; Revach et al., 2022; Tsiamis et al., 
2020), and direct data-driven state estimation (Liu, Wang, Sun, 
Bullo, & Chen, 2024; Mehra, 1970; Shafieezadeh Abadeh, Nguyen, 
Kuhn, & Mohajerin Esfahani, 2018; Wolff, Lopez, & Müller, 2024). 
Indirect data-driven state estimation identifies a state-space
model using the pre-collected system data following classical 
system identification approaches (Ljung, 1999), and then designs 
a state estimator based on the identified model. State-space 
linear models (Tsiamis et al., 2020; Xian et al., 2024) and neural 
networks (NNs) (Revach et al., 2022) are commonly adopted. 
For example, Tsiamis et al. (2020) adopted a subspace iden-
tification approach to identify a state-space linear model and 
later proposed both a certainty equivalent and a robust Kalman 
filter.  Xian et al. (2024) proposed a new model-based exter-
nal disturbance observer to estimate the unknown time-varying 
external disturbance, then the optimal coordination problem 
was solved using a novel and integrated algorithm architecture. 
Revach et al. (2022) trained an NN model to describe a sys-
tem before designing a Kalman filter. Direct data-driven state 
estimation designs a state estimator directly from system data 
with no intermediate system identification step. This method 
data mining, AI training, and similar technologies.
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is based on different principles, such as adaptive control the-
ory (Mehra, 1970; Shafieezadeh Abadeh et al., 2018) and Willems’ 
fundamental lemma (Liu et al., 2024; Wolff et al., 2024). The pio-
neering idea of direct data-driven state estimation can be traced 
back to adaptive filtering for cases with unknown noise covari-
ances (Mehra, 1970; Shafieezadeh Abadeh et al., 2018). Recently, 
Willems’ fundamental lemma (Willems, Rapisarda, Markovsky, & 
De Moor, 2005, Theorem 1), which provides a sufficient condition 
under which an input–output trajectory of a linear time-invariant 
system can be recovered by a measured input–output trajectory, 
contributes to several essential results on direct data-driven fil-
tering (Liu et al., 2024; Wolff et al., 2024). For example, Liu et al. 
(2024) and Wolff et al. (2024) leveraged this lemma to design 
an explicit observer and an implicit moving horizon estimator 
for a state-space linear system with unknown system matrices, 
respectively.

The aforementioned data-driven state estimation methods 
rely on a prior input-state-output trajectory, where the input, 
state, and output should be sampled at the same frequency. How-
ever, in many practical scenarios, the state sampling frequency 
is often much lower than that of the input–output trajectory, as 
measuring the state may require additional sampling strategies 
and extended sampling times, as illustrated in the motivating 
example in Section 2. In this case, an unresolved issue is how to 
leverage a prior input–output trajectory and a lower-frequency 
sampled state trajectory for online state estimation of an un-
known system. Moreover, the impact of data noise on the filtering 
performance is not yet fully understood in the literature. For 
example, the specific relationship between the magnitude of data 
noise and the filtering performance has not been established. 
Altogether, designing a filtering method that can estimate the 
state of a given state-space model with unknown system matrices 
has not well addressed, let along conducting an in-depth analysis 
of the filtering performance.

Motivated by the above findings, this paper investigates the 
state estimation problem for a linear system with a pre-defined 
state but unknown system matrices of the corresponding state-
space model. For this system, we pre-collect an input–output 
trajectory at a higher frequency and a state trajectory at a lower 
frequency. This paper formulates the modeling and filtering prob-
lem for the unknown linear system as a unified maximum likeli-
hood (ML) optimization problem, the solution to which generates 
a novel robust data-driven Kalman filter (RDKF). In comparison 
to the literature, this paper possesses several special features as 
follows:

(1) The RDKF is developed based on a prior input–output tra-
jectory and a lower-frequency sampled state trajectory, 
providing an alternative for state estimation in practical 
scenarios where sampling the state at the same frequency 
as the input–output trajectory is impractical.

(2) A feasibility condition for the RDKF is established, demon-
strating that the RDKF is feasible when the prior system 
trajectory is sufficiently long, and providing a specific re-
quirement on the trajectory length (Theorem  1).

(3) The filtering performance of the RDKF is ensured. Par-
ticularly, a sample-complexity bound is derived for the 
performance gap between the RDKF and the Kalman filter 
based on known system matrices, which also quantita-
tively reveals the impact of data noise on the performance 
(Theorems  2 and 3).

(4) The RDKF is further generalized for cases with only a prior 
input–output trajectory. In this case, the state estimate cor-
responds to a balanced realization of the system, which can 
be applied to control tasks such as LQG control (Corollary 
2).
2

The remainder of this paper is organized as follows. Section 2 
presents the problem formulation. Section 3 introduces a novel 
RDKF algorithm. Section 4 analyzes the necessary informativ-
ity of the pre-collected data required for performing the RDKF. 
Section 5 evaluates the filtering performance of the RDKF. The 
theoretical results are illustrated in Section 6. Section 7 concludes 
the paper.

Notations. Let Rn denote the real coordinate space of dimen-
sion n. Let ⊗ denote the Kronecker product. Let In denote the
n-order identity matrix. Let 0 denote a scalar, vector, or matrix 
of an appropriate dimension with all elements being zero. Let 
N+ be the set of positive integers and N = N+

∪ 0. For any 
given vector µ and positive definite matrix Σ with appropriate 
dimensions, let N (µ, Σ) denote Gaussian distribution with mean 
µ and covariance Σ . For any positive function f , let lnf  denote its 
natural logarithm. For any matrix S, S(m1 : m2; n1 : n2) denotes 
the block matrix in S with elements Sij, m1 ≤ i ≤ m2, n1 ≤

j ≤ n2; S† denotes its right/left inverse if it has full row/column 
rank. For a square matrix S, |S| denotes its determinant; λ(S)
denotes the set of its eigenvalues; λmax(S)/λmin(S) denotes its 
maximum/minimum eigenvalue if S is positive definite.

2. Problem formulation

2.1. System model

This paper considers a class of linear systems: 
xk+1 = Axk + Buk + ωk,

yk = Cxk + νk, k ∈ N,
(1)

where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rp denote the system 
state, input, and output at time step k, respectively; A ∈ Rn×n, 
B ∈ Rn×m, and C ∈ Rp×n are unknown system state, input, 
and output matrices, respectively; ωk ∈ Rn

∼ N (0, Q ) and 
νk ∈ Rp

∼ N (0, R) are the system process and measurement 
noise with Q ∈ Rn×n > 0 and R ∈ Rp×p > 0, respectively. The 
initial system state is denoted by x0 ∼ N (x̄0, P0) with x̄0 ∈ Rn

and P0 ∈ Rn×n > 0. We assume that x0, ωk, and νk, ∀k ∈ N, are 
mutually uncorrelated.

Assumption 1. (C, A) is observable.

2.2. Data collection

Suppose that we can pre-collect an input-state-output tra-
jectory of (1), as shown in Fig.  1(a) , where the state sampling 
frequency is lower than the input and output sampling frequency. 
To be more specific, the sampled state sequence is denoted by 
xp = [xTk1 , xTk2 , xTk3 , . . . , xTkN+1

]
T , (2)

where the superscript ‘p’ denotes the pre-collected data. Then, let 
Li = ki+1 − ki, i ∈ V ≜ {1, 2, . . ., N}. Without loss of generality, 
we assume that there exists a constant scalar L such that Li ≥ L, 
∀i ∈ V . If Li < L for some i ∈ V , we can omit the sampled state 
xki+1  and retain the next sampled state until the condition Li ≥ L
is satisfied. This assumption is practical, particularly when the 
state sampling frequency is much lower than the input–output 
sampling frequency. Next, we divided the input–output trajectory 
into N segments and then extracted the first L points from each 
segment, as
ui,p

= [uT
ki , uT

ki+1, . . . , uT
ki+L−1]

T ,

yi,p = [yTki , yTki+1, . . . , yTki+L]
T ,
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Fig. 1. The pre-collected and online system trajectories, where red, yellow, and blue solid dots denote the state, input, and output, respectively. In Fig. (a), the states 
are sampled at time instants k1 , k2 , . . ., kN+1 , and the inputs and outputs are sampled at every time instant from k1 to kN+1 . This paper aims to estimate the online 
state at every time instant, using the pre-collected input-state-output trajectory and the online input–output trajectory. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
 

where i ∈ V denotes the ith segment. The augmented input and 
output data of all segments are denoted by 
up

= [(u1,p)T , . . . , (uN,p)T ]T ,

yp = [(y1,p)T , . . . , (yN,p)T ]T .
(3)

Let ωp and νp denote the corresponding process and measure-
ment noise, respectively. Further, we define the following nota-
tions

U ≜ [u1,p, . . . , uN,p
], Y ≜ [y1,p, . . . , yN,p],

Ω ≜ [ω1,p, . . . , ωN,p
], V ≜ [ν1,p, . . . , νN,p], (4)

X ≜ [xk1 , . . . , xkN ].

It follows from (1) that 
Y = GX + FU + HΩ + V , (5)

where F = H(IL ⊗ B),

G =

⎡⎢⎢⎢⎢⎣
C
CA
CA2

...

CAL

⎤⎥⎥⎥⎥⎦ , H =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0
C 0 0
CA C 0
...

. . .
...

CAL−1 CAL−2
· · · C

⎤⎥⎥⎥⎥⎦ .

Assumption 2. L ≥ max{n,m, p}.

Remark 1.  The conditions L ≥ m and L ≥ p are assumed only 
for notational simplicity, while the condition L ≥ n is assumed to 
ensure the observability matrix has full column rank (Chen, 1984, 
Theorem 6.DO1).

Assumption 3. rank
[

X
U

]
= n + Lm.

Motivating Example: Continuous stirred-tank reactors (CSTRs)
play a crucial role in industrial processes, particularly in chemical 
production and reaction engineering. State monitoring of CSTRs 
is essential for ensuring process efficiency, maintaining product 
quality, and preventing safety hazards. According to Bequette 
(2003), a CSTR for an exothermic reaction can be described by:

ĊA =
q
V
(Cf − CA) − k0exp

(
−

E
RT

)
CA,

Ṫ =
q
V
(Tf − T ) −

k0∆H
ρCp

exp
(
−

E
RT

)
CA +

UA(Tc − T )
VρCp

,

where CA ∈ R is the reactant concentration; T ∈ R is the reactor 
temperature that can be measured; Tc ∈ R is the temperature of 
the coolant stream that can be manipulated; and see Bequette 
(2003) for the definitions of other parameters. Note that the 
nominal operating setpoint of the CSTR corresponds to a steady 
state C s, T s, and T s

c . By letting x = [CA − C s, T − T s
]
T , u = Tc, 

and y = T  be the state, input, and output vectors, the dynamics 
of the CSTR near the nominal operating setpoint can be modeled 
3

as (1) (Bequette, 2003), where A ∈ R2×2 and B ∈ R2 are unknown 
system matrices. For this system, we can pre-collect an input-
state-output trajectory. Specifically, we can measure temperature 
using sensors at a minute-level frequency, and measure reactant 
concentration through chemical analysis methods usually at an 
hourly frequency (Bequette, 2003). By doing so, we obtain a 
higher-frequency sampled input–output trajectory, denoted by 
up and yp, and a lower-frequency sampled state trajectory, de-
noted by xp. The objective is to estimate the online reactant 
concentration using the pre-collected system trajectory.

This paper focuses on state estimation for a predefined state 
of an unknown system, as shown in the example above, requiring 
prior data related to this state. This differs from subspace identi-
fication or Willems’ fundamental lemma-based control (Adachi & 
Wakasa, 2021; Coulson, Lygeros, & Dörfler, 2019; Oymak & Ozay, 
2019; Turan & Ferrari-Trecate, 2021), which relies only on input–
output data and does not require a specific state-space model. 
We will also generalize the results to cases without prior state 
information, applicable to control tasks such as LQG control.

2.3. Problem statement

The objective of this paper is to estimate an online state 
trajectory of (1) based on the pre-collected data {up, xp, yp}. The 
online trajectory is described by 
u[0,k] ≜ [uT

0, uT
1, . . . , uT

k ]
T ,

x[0,k+1] ≜ [xT0, xT1, . . . , xTk+1]
T ,

y[1,k+1] ≜ [yT1, yT2, . . . , yTk+1]
T , k ∈ N,

(6)

where u[0,k] and y[1,k+1] are known, as shown in Fig.  1(b).
Problem: For system (1) with unknown A, B, and C , design 

a filtering algorithm to estimate the state x[0,k+1] defined in (6), 
using {up, xp, yp} and {u[0,k], y[1,k+1]}, defined in (2), (3), and (6), 
respectively, as 
x̂[0,k+1] = gk+1(u[0,k], y[1,k+1], up, yp, x̂p0), k ∈ N, (7)

where x̂[0,k+1] = [x̂T0, . . . , x̂
T
k+1]

T  denotes the estimate of the 
online x[0,k+1] that corresponds to (1), and gk+1(·) denotes the 
filtering algorithm. Moreover, the filtering performance should 
be quantitatively analyzed and compared with the Kalman filter 
based on known matrices A, B, and C .

3. RDKF design

In this section, we provide a framework for estimating the 
state in (6) using the pre-collected data {up, xp, yp}. Let x, y, and yp
be the random variables of x̂[0,k+1], y[1,k+1], and yp, respectively. 
Then, we define a joint probability density function of x̂[0,k+1], 
y[1,k+1], and yp:

fx,y,yp (x̂[0,k+1], y[1,k+1], yp)
≜ fx,y,yp (x = x̂[0,k+1], y = y[1,k+1], yp = yp).
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Lemma 1.  For system (1), the joint probability density function 
fx,y,yp (x̂[0,k+1], y[1,k+1], yp) is equivalent to 

fx,y,yp (x̂[0,k+1], y[1,k+1], yp) = constant × foff × fon,

where

foff =

N∏
i=1

L−1∏
h=0

exp
(
−

1
2
(ω̂i

h)
TQ−1ω̂i

h

)
×

N∏
i=1

L∏
h=0

exp
(
−

1
2
(ν̂ ih)

TR−1ν̂ ih

)
,

and

fon = exp
(
−

1
2
(x̂0 − x̄0)TP−1

0 (x̂0 − x̄0)
)

×

k∏
t=0

exp
(
−

1
2
ω̂T

t Q
−1ω̂t −

1
2
ν̂Tt+1R

−1ν̂t+1

)
,

ω̂[0,k] ≜ [ω̂T
0 , . . ., ω̂T

k ]
T  and ν̂[1,k+1] ≜ [ν̂T1 , . . ., ν̂Tk+1]

T  are vari-
ables to approximate the system process and measurement noise, 
respectively, satisfying 
x̂t+1 = Ax̂t + But + ω̂t ,

yt = Cx̂t + ν̂t , t = 0, 1, . . . , k + 1,
(8)

and

ω̂p
=[(ω̂1)T , . . . , (ω̂N )T ]T , ω̂i

= [(ω̂i
0)

T , . . . , (ω̂i
L−1)

T
]
T ,

ν̂p =[(ν̂1)T , . . . , (ν̂N )T ]T , ν̂ i = [(ν̂ i0)
T , . . . , (ν̂ iL)

T
]
T ,

are variables with their elements satisfying 

yki+h = CAhxki +
h∑

l=1

CAl−1(Bui
h−l + ω̂i

h−l) + ν̂ ih, (9)

for all h = 1, . . . , L, and yki = Cxki + ν̂ i0.

The proof of Lemma  1 is given in the online version (Duan, Liu, 
Xing, & Johansson, 2024). According to Rauch, Tung, and Striebel 
(1965), when the system matrices A, B, and C are known, the 
minimum mean-square error (MMSE) state estimate for (1) is the 
optimal solution to an ML optimization problem. In this paper, 
we consequently perform state estimation for (1) by instead 
maximizing the likelihood function derived in Lemma  1, i.e., 

min
x̂0,ω̂

p,ν̂p,
ω̂[0,k],ν̂[1,k+1]

− lnfoff − lnfon

s.t. (8) and (9).
(P I

k+1)

Let x̂∗

0, ω̂∗

[0,k], ν̂∗

[1,k+1], ω̂p∗, and ν̂p∗ denote the solution to P I
k+1. Let 

x̂∗

[0,k+1] = [(x̂∗

0)
T , (x̂∗

2)
T , . . ., (x̂∗

k+1)
T ]T  denote the state evolution of 

(8) given these optimal variables.
Note that the optimization problem P I

k+1 is nonlinear and non-
convex, and cannot be solved in general. We slightly modify P I

k+1
to get a problem solvable with a recursive algorithm and with 
a solution close to the optimal one with known A, B, and C . 
Specifically, we modify P I

k+1 as 

min
x̂0,ω̂[0,k],
ν̂[1,k+1]

max
ω̂p∈Bϵ1 (ω̂p*),

ν̂p∈Bϵ2 (ν̂p*)

− lnfon

s.t. (8),

(P II
k+1)

with Bϵ1 (ω̂p*) = {ω̂p
|∥ω̂p

− ω̂p*
∥2 ≤ ϵ1} and Bϵ2 (ν̂p*) = {ν̂p|∥ν̂p −

ν̂p*∥2 ≤ ϵ2}, where ω̂p∗ and ν̂p∗ are solution to 
min − lnfoff, s.t. (9), (P II )

ω̂p,ν̂p 0

4

Algorithm 1 RDKF 
Input: U , Y , X , u, and y, defined in (4) and (6);
Output: x̂k, k ∈ N;
1: compute matrices 

A♯ = G†
1,♯G2,♯, B♯ = G†

1,♯G3,♯, C♯ = G4,♯; (10)

with 
G1,♯ = Z♯(1 : Lp; 1 : n),
G2,♯ = Z♯(p + 1 : Lp + p; 1 : n),
G3,♯ = Z♯(p + 1 : Lp + p; n + 1 : 2n),

G4,♯ = G1,♯(1 :p; 1 :n), Z♯ = Y ([XT ,UT
]
T )†;

(11)

2: for k = 0, 1, . . . do 
x̂k+1|k = Âkx̂k + B̂kuk,

x̂k+1 = x̂k+1|k + Lk+1(yk+1 − Ĉkx̂k+1|k),

Lk+1 = P̄k+1ĈT
k (R̂ + ĈkP̄k+1ĈT

k )
−1, (12)

P̄k+1 = A♯P̂kAT
♯ + Q ,

Pk+1 = P̄k+1−P̄k+1ĈT
k (R̂ + ĈkP̄k+1ĈT

k )
−1ĈkP̄k+1,

where the filter parameters are defined as

Âk =A♯(I − λψ2
AϵP̂k), B̂k =B♯ − λψ2

B ϵP̂k, Ĉk =C♯,

R̂=R − λ−1ϵC♯CT
♯ , P̂k = (P−1

k + λψ2
AϵI)

−1,

x̂k+1 is the estimate of xk+1 in (6), x̂0 = x̄0, λ is any scalar 
greater than ∥ϵCT

♯ R
−1C♯∥2; and ψA, ψB, and ϵ are given in (19).

3: end for

and ϵ1 and ϵ2 are the upper bounds of ∥ωp
−ω̂p*

∥2 and ∥νp−ν̂p*∥2, 
respectively.

To solve P II
k+1, we propose the RDKF algorithm. Let us explain 

the main stages of the algorithm. First, when regarding A, B, and C
as unknown variables, the optimal solution to P II

0  can be directly 
derived as ω̂p

= 0 and ν̂p = 0. Then, if Assumption  3 holds, 
substituting the solution into (9) gives 
Z♯ ≜ [G♯ F♯] = Y ([XT ,UT

]
T )†, (13)

where Y , X , and U are given in (5), and G♯ and F♯ are the estimates 
of G and F , respectively. Let A♯, B♯, and C♯ be the estimates of A, 
B, and C , respectively. We assume that G♯ and F♯ have the same 
structures with respect to A♯, B♯ and C♯ as G and F  have with 
respect to A, B and C , respectively. Hence, the following equations
G1,♯A♯ = G2,♯,G1,♯B♯ = G3,♯, C♯ = G1,♯(1 : m; 1 : n),

hold. If G1,♯ has full column rank, we obtain 10. When there 
exist positive scalars ψA, ψB, and ϵ such that ∥A − A♯∥2 ≤ ψAϵ, 
∥B−B♯∥2 ≤ ψBϵ, and ∥C−C♯∥2 ≤ ϵ, P II

k+1 can be slightly modified 
as

min
ω̂[0,k],ν̂[1,k+1]

max
∥∆A∥2≤ψAϵ,

∥∆B∥2≤ψBϵ,∥∆C ∥2≤ϵ

−lnfon

s.t. x̂t+1 = (A♯ +∆A)x̂t + (B♯ +∆B)ut + ω̂t ,

yt = (C♯ +∆C )x̂t + ν̂t , t = 0, 1, . . . , k + 1.

By utilizing the regularized least-squares method in Sayed (2001), 
an explicit solution to the above optimization problem is derived 
as 12 in Algorithm 1.

Remark 2.  Maximum likelihood estimation is a fundamental 
principle for state estimation, e.g., in switching (Alessandri, Bagli-
etto, & Battistelli, 2010), time-varying (Poncela, Poncela, & Perán, 
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2013), and nonlinear systems (Marelli, Fu, & Ninness, 2015). This 
paper employs this principle to deal with state estimation of 
unknown systems, where the new likelihood function derived in 
Lemma  1 incorporates both the pre-collected data and the online 
measurements.

When no prior state can be collected, the RDKF can be directly 
extended to estimate the state of a balanced realization, applica-
ble to control tasks like LQG control. To move on, we restack U
and Y  in (4) by replacing L with 2L, and modify Assumption  3 as 

Assumption 4. rank(U) = 2Lm.

Similarly to system identification (Tsiamis et al., 2020; Zheng 
& Li, 2020), we assume the initial state of pre-collected input–
output trajectory (3) to be either zero or unknown zero-mean 
random noise. In this case, the RDKF proposed in Algorithm 1 
remains valid, except that Z♯ in 11 is replaced by
Znew
♯ = [Gnew

♯ Fnew
♯ (1 : Lp + p; 1 : Lm)], Fnew

♯ = YU†,

Gnew
♯ = U s

1Σ
1/2
1 , Fnew

♯,H
SVD

HHH [U s
1 U s

2]

[
Σ1

Σ2

][ V s
1

V s
2

]
, (14)

where Fnew
♯,H  is the Hankel form of Fnew

♯  (Oymak & Ozay, 2019; 
Tsiamis & Pappas, 2019); ‘‘SVD’’ denotes the singular value de-
composition; Σ1 ∈ Rn×n contains the n-largest singular values. 
Let us explain the derivation process of the new result as follows. 
Similarly to cases with prior states, we still solve P II

k  to design the 
RDKF for cases without prior states. In the new case, (13) reduces 
to Fnew

♯ = YU†, where Fnew
♯  is the estimate of F . Note that F  is a 

block-Toeplitz matrix, which can be reshaped as a Hankel matrix 
FH satisfying FH = GGB, where G is the observability matrix and 
GB is the controllability matrix (Tsiamis & Pappas, 2019, Section 
3). Hence, we can reshape Fnew

♯  to get a Hankel matrix Fnew
♯,H . By 

taking the SVD of Fnew
♯,H , the controllability matrix of a balanced 

realization can be derived as Gnew
♯  in (14). As a result, Z♯ in 11 

is replaced by Znew
♯  in (14), while the other steps in Algorithm 1 

remain valid. 

4. Data informativity analysis

This section is aimed at analyzing the informativity of the pre-
collected data required for performing the RDKF. Similarly to (13), 
let Z ≜ [G F ], and eZ = Z♯ − Z be the error between Z and Z♯. It 
follows from (5) that 

eZ = (HΩ + V )
[

X
U

]T ([
X
U

][
X
U

]T)−1

, (15)

which is obtained by substituting the explicit expression of
([XT ,UT

]
T )†. Similarly to Tsiamis et al. (2020), we assume that 

the system is stable and Li ≫ L. In the experiments of generating 
data, let ui

h ∼ N (0, S) with S ∈ Rm×m > 0. In this case, 
xki  is a Gaussian variable, and we denote xki ∼ N (0, Px) with 
Px ∈ Rn×n > 0. When Li ≫ L and the system state matrix A
is stable, it is reasonable to assume that ui

h and xki  are mutually 
uncorrelated, ∀h = ki, ki +1, . . . , ki + L−1, ∀i ∈ V . Let Q = σ 2

ω In, 
R = σ 2

ν Ip, Pξ = σ 2
ξ In, S = σ 2

u Im, and Px = σ 2
x In for notational 

simplicity.

Proposition 1.  Consider system (1) with the collected data U, 
Y , and X defined in (4). Suppose Assumption  3 holds. If N ≥

32L2log(27/δ), then ∥eZ∥2 ≤ O(
√
1/N) holds with probability at 

least 1 − δ with δ ∈ (0, 1).

The proof of Proposition  1 is given in Appendix  A.1. Let G1, 
G2, and G3 represent the corresponding block matrices in Z as 
G1,♯, G2,♯, and G3,♯ in Z♯, respectively, where G1,♯, G2,♯, and G3,♯
are defined in Algorithm 1. Subsequently, we have the following 
corollary.
5

Corollary 1.  Consider system (1) with the pre-collected data U, Y , 
and X, defined in (4). Suppose Assumption  3 holds. For any scalars 
ϵ ∈ (0, 1) and δ ∈ (0, 1), there always exists a positive integer 
N0(ϵ, δ) such that if N ≥ N0(ϵ, δ), then
∥G1 − G1,♯∥2 ≤ ϵ, ∥G2 − G2,♯∥2 ≤ ϵ, ∥G3 − G3,♯∥2 ≤ ϵ,

hold with probability at least 1 − δ.

From the proof of Proposition  1, one feasible N0(ϵ, δ) is given 
by 
N0(ϵ, δ) = 32L2log(27/δ) × max{1, 2M2

Z /ϵ
2
+ 2α2

0}, (16)

where MZ  is a positive constant defined as 
MZ = α0∥G♯∥2 + β0, (17)

with α0 = σmaxσωL/σ 2
min, β0 = σmaxσν/σ

2
min, σmax = max{σx, σu}, 

and σmin = min{σx, σu}. The above result reveals an explicit rela-
tion between the estimation error bound ϵ and the number of the 
pre-collected states N . Based on Corollary  1, we can determine 
the number N required for ensuring the full column rank of G1,♯
for performing the proposed RDKF.

Theorem 1.  Suppose Assumptions  1, 2 and 3 hold. If N ≥ N0(ϵ, δ)
and ϵ < ϵ0, where N0(ϵ, δ) is defined in (16) and ϵ0 is defined as 

ϵ0 ≜

√
∥G1∥

2
2 + λmin(GT

1G1) − ∥G1∥2, (18)

then G1,♯ has full column rank with probability at least 1 − δ.

Theorem  1 is proved in Appendix  A.2. Theorem  1 reveals that 
G1,♯ has full column rank with any high probability if conditions 
in Theorem  1 are met.

5. RDKF performance evaluation

This section presents the performance gap between the pro-
posed RDKF and the optimal Kalman filter based on known sys-
tem matrices.

Theorem 2.  Suppose that Assumptions  1, 2, and 3 hold. When 
N ≥ N0(ϵ, δ) and ϵ < ϵ0 with N0(ϵ, δ) and ϵ0 being defined in 
(16) and (18), respectively, then 
∥A − A♯∥2 ≤ ψAϵ, ∥B − B♯∥2 ≤ ψBϵ, ∥C − C♯∥2 ≤ ϵ,

 simultaneously hold with probability at least 1 − δ, where ψA and 
ψB are positive constants defined in (19).

Theorem  2 is proved in Appendix  A.3. Theorem  2 offers the 
upper bounds for the estimation errors of system matrices. Con-
sidering a given N ≥ L0 ≜ 32L2log(27/δ), it follows from (16) and 
the proof of Theorem  2 that the values of ϵ, ψA, and ψB is given 
by 

ϵ =

√
2M2

Z L0/(N − 2α2
0L0),

ψA = ∥G†
1,♯∥2(∥A♯∥2 + 1)/(1 − ∥G†

1,♯ϵ∥2),

ψB = ∥G†
1,♯∥2(∥B♯∥2 + 1)/(1 − ∥G†

1,♯ϵ∥2),

(19)

which are used for the RDKF presented in Algorithm 1.
According to Theorems  1 and 2, G1,♯ has full column rank with 

probability at least 1 − δ when N ≥ N0(ϵ, δ) and ϵ < ϵ0. Hence, 
(C , A♯) is observable (Chen, 1984, Theorem 6.DO1). Further, P̂k, 
P̄k, and Pk in 12 exponentially converge to the unique solution 
to Sayed (2001) 
P̂♯ = (P−1

♯ + λψ2
Aϵ)

−1, P̄♯ = A♯P̂♯AT
♯ + Q ,

¯ ¯ T ˆ ¯ T −1 ¯
(20)
P♯ = P♯ − P♯C♯ (R + C♯P♯C♯ ) C♯P♯,
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with probability at least 1− δ when N ≥ N0(ϵ, δ) and ϵ < ϵ0. We 
assume that the filter parameters in 12 are in their steady states 
for notational simplicity. In addition, the steady-state Kalman 
filter for (1) with known A, B, and C is given by Anderson and 
Moore (2005)
x̂k+1|k = Ax̂k + Buk,

x̂k+1 = x̂k+1|k + L(yk+1 − Cx̂k+1|k),

L = P̄CT (R + CP̄CT )−1, (21)

P̄ = APAT
+ Q ,

P = P̄ − P̄CT (R + CP̄CT )−1CP̄,

where x̂k+1|k and x̂k+1 are the a priori and a posteriori MMSE 
estimates, respectively; and L, P̄ , and P are filter parameters. 
Further, an assumption on the state xk is needed, which holds for 
many systems with closed-loop controllers.

Assumption 5.  There exists a positive definite matrix Π such 
that E{xkxTk } ≤ Π , ∀k ∈ N.

Let ek = x̂k − xk be the estimation error of the RDKF at step 
k, and Pe,k ≜ E{ekeTk }. A result about the filtering performance of 
the proposed RDKF is given as follows.

Theorem 3.  Consider system (1) with the pre-collected data U, Y , 
and X, defined in (4). Suppose Assumptions  1, 2, 3, and 5 hold. When 
N ≥ N0(ϵ, δ) and ϵ < ϵ0 with N0(ϵ, δ) and ϵ0 being defined in (16) 
and (18), respectively, then
∥Pe,∞ − P∥2 ≤ O

(√
1/N

)
,

holds with probability at least 1 − δ.

A brief outline of the proof for Theorem  3 is given below. First, 
it follows from Theorem  2 and (20) that
∥Â − A∥2, ∥B̂ − B∥2, ∥Ĉ − C∥2, ∥R̂ − R∥2, ∥P♯ − P̂♯∥2,

are upper bounded by O(
√
1/N) with probability at least 1 − δ. 

In the following, the proof process is divided into five steps by 
considering five cases:

Case (1): ∥B̂ − B∥2 = ∥Ĉ − C∥2 = ∥R̂ − R∥2 = ∥P♯ − P̂♯∥2 = 0.
Case (2): ∥Ĉ − C∥2 = ∥R̂ − R∥2 = ∥P♯ − P̂♯∥2 = 0;
Case (3): ∥R̂ − R∥2 = ∥P♯ − P̂♯∥2 = 0;
Case (4): ∥P♯ − P̂♯∥2 = 0;
Case (5): The original case in Theorem  3.
To distinguish, let Pe,∞ in Cases 1–5 be P1

e,∞–P5
e,∞, respectively. 

By leveraging the uniform boundedness of filter parameters in 
each case, we can prove that ∥P1

e,∞ −P∥2, ∥P2
e,∞ −P1

e,∞∥2, ∥P3
e,∞ −

P2
e,∞∥2, ∥P4

e,∞ − P3
e,∞∥2, and ∥P5

e,∞ − P4
e,∞∥2 are upper bounded 

by O(
√
1/N). Hence, we have ∥P5

e,∞ − P∥2 ≤ O(
√
1/N), as stated 

in Theorem  3. A complete proof of Theorem  3 is available in the 
online version (Duan et al., 2024).

If no prior state is available, as derived in Section 3, we modify 
Algorithm 1 by replacing Z♯ in 11 with Znew

♯  in (14). In this 
case, the state estimate corresponds to a balanced realization, 
which can be used for control tasks like LQG control. Similarly to 
Theorem  2, we can also derive sample-complexity upper bounds 
for the learning errors of A, B, C . By denoting P in (21) for this 
case as Pb, we have the following corollary.

Corollary 2.  Consider system (1) with the pre-collected data U
and Y  defined in (4). Suppose Assumptions  1, 2, 4, and 5 hold. In 
addition, Z♯ in Algorithm 1 is replaced with Znew

♯  in (14). For any 
scalars ϵ ∈ (0, 1) and δ ∈ (0, 1), there always exists a positive 
integer N0(ϵ, δ) such that if N ≥ N0(ϵ, δ), then
∥Pe,∞ − Pb∥2 ≤ O

(√
1/N

)
,

holds with probability at least 1 − δ.
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Fig. 2. The values of AMSE under different numbers of samples and magnitudes 
of noise using the proposed RDKF, where the number N is set as 10, 20, . . . , 190, 
respectively.

Remark 3. Corollary  2 reveals that the designed RDKF can 
be adapted for cases where prior states are unavailable, while 
ensuring a sample complexity bound for the filtering perfor-
mance. In particular, we introduce a novel approach that uses 
the estimation error covariance as the metric for the sample 
complexity analysis. This metric offers an intuitive assessment of 
the performance gap between the proposed RDKF and the optimal 
Kalman filter based on known system matrices.

6. Simulation

In this section, the effectiveness of the proposed RDKF is 
illustrated using a simulation of a CSTR (Bequette, 2003). The 
dynamics of the CSTR is described by a linear state-space model, 
see Section 2.2. Similarly to Bequette (2003), consider that the 
nominal operating setpoint of the CSTR corresponds to a steady 
state C s

= 0.5 mol/l, T s
= 350 K, and T s

c = 300 K. Let x =

[CA − C s, T − T s
]
T , u = Tc, and y = T  be the state, input, and 

output vectors. By utilizing a sampling time of ts = 0.1 min, the 
dynamics of the CSTR is modeled as (1) (Sui, Johansen, & Feng, 
2010) with

A =

[
0.7776 −0.0045
26.6186 1.8555

]
, B =

[
−0.0004
0.2907

]
, C = [0 1].

Let σω = 0.01 and σν = 0.1. Assume that the above matrices A
and B are unknown. Suppose that we can collect an input-state-
output sequence up, xp, and yp defined in (2) and (3), where the 
parameters are chosen as N = 100, L = 5, σx = 0.4, and σu = 2. 
Based on these data, we apply the proposed RDKF to estimate an 
online trajectory of the CSTR with x0 = [0.4, 5]T  and uk = −8yk. 
To proceed, two types of errors are defined:

MSE(h) =
1
50

50∑
k=1

∥xhk − x̂hk∥
2
2, AMSE =

1
Nt

Nt∑
h=1

MSE(h),

where the notation h denotes the hth trial, and Nt = 200 denotes 
the number of Monte Carlo trials.

The filtering performance of the CSTR by the designed RDKF is 
illustrated in Figs.  2 and 3. Fig.  2 illustrates that the filtering per-
formance of the proposed RDKF is improved with an increasing 
number of samples, which coincides with Theorem  3. More-
over, it also shows that the smaller noise magnitudes leads to 
a better filtering performance. In addition, four relevant filtering 
methods in the literature are included for comparison, namely 
the model-based Kalman filter using known system matrices 
(MBKF) (Anderson & Moore, 2005), system identification-based 
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Fig. 3. The values of MSE of 200 Monte Carlo trials using different filtering 
methods, where the red solid line and the blue dotted line denote the median 
and mean, respectively; the tops and bottoms of each box represent the 25th 
and 75th percentiles, respectively; and black circles denote outliers beyond 1.5 
times the interquartile range.

Kalman filter (SIKF) (Verhaegen & Verdult, 2007), Willems’ fun-
damental lemma-based state estimator (FLSE) (Liu et al., 2024), 
and NNs-based Kalman filter (NNKF) (Revach et al., 2022). It is 
worth mentioning that the SIKF, FLSE, and NNKF use a prior 
state trajectory sampled at every time step, whereas the RDKF 
employs a lower-frequency sampled state trajectory. Even so, it 
is shown in Fig.  3 that the RDKF demonstrates better filtering 
performance and superior capability in handling noisy data. The 
above observations illustrate the theoretical results obtained in 
this paper. 

7. Conclusion

This paper proposed a new RDKF for a class of unknown 
linear systems, where a prior input–output trajectory sampled 
at a higher frequency and a prior state trajectory sampled at a 
lower frequency are available. Specifically, an ML optimization 
problem has been formulated and solved to construct the state 
estimate. A sample-complexity upper bound has been derived for 
the performance gap between the designed RDKF and the Kalman 
filter with known system parameters. Simulations have demon-
strated the effectiveness of the theoretical results. In the future, 
we will further explore data-driven unknown input observers, 
leveraging the solid theoretical foundation laid by Lv, Li, and 
Duan (2024), which presented an innovative and practically ap-
plicable framework for minimal-order fixed-time unknown input 
observers.
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Appendix

A.1. Proof of Proposition  1

First, according to (15), it can be directly derived that
∥eZ∥2 ≤ (∥HΩ[XT ,UT

]∥2 + ∥V [XT ,UT
]∥2)

× ∥([XT ,UT
]
T
[XT ,UT

])−1
∥2. (22)

In the following, the three terms on the right side of (22) are 
analyzed. For the first term, with probability at least 1 − δ/3,

∥HΩ[XT ,UT
]∥2 ≤ ∥H∥2∥Ω[XT ,UT

]∥2

≤ 4∥H∥2σωσmax
√
N(n + Ln + Lm)log(27/δ),

holds when N ≥ 2(n + Ln + Lm)log(4/δ), where σmax = max {σx, 
σu} and the second ‘‘≤’’ is derived using Lemma 1 in Dean, Mania, 
Matni, Recht, and Tu (2020), Zheng and Li (2020). Similarly, the 
second termV [XT ,UT

]

2

≤ 4σνσmax
√
N(n + p + Lp + Lm)log(27/δ),

holds with probability at least 1 − δ/3 when N ≥ 2(n + p + Lp +

Lm)log(3/δ). By applying Lemma 2 in Dean et al. (2020), Zheng 
and Li (2020), the last term√

λmin([XT ,UT ]T [XT ,UT ])

≥ σmin

(√
N −

√
n + Lm −

√
2log(3/δ)

)
≥

1
2
σmin

√
N,

holds with probability at least 1 − δ/3, where σmin = min {σx, 
σu}, and the second ‘‘≥’’ holds when N ≥ 8(n+ Lm)+16log(3/δ). 
Hence, the last term on the right side of (22) can be relaxed as
∥([XT ,UT

]
T
[XT ,UT

])−1
∥2 ≤ 4/(Nσ 2

min).

Using the union bound, it can be derived that
∥eZ∥2 < MZ

√
log(27/δ)/N,

holds with probability at least 1−δ when N ≥ 8(n+Lm)+2(Lp+

Lm+Ln+p+n+3)log(3/δ), where MZ  is a constant defined below 
(16), and Assumption  2 is used such that 2n + Lm ≤ L(2 + m), 
n+ Ln+ Lm < L(1+ n+m) and n+ p+ Lp+ Lm < L(1+ 2p+m). 
Noting that we have log(10/δ) ≥ 1, the condition N ≥ 8(n+Lm)+
2(Lp + Lm + Ln + p + n + 3)log(3/δ) can be further relaxed as 
N ≥ 32L2log(10/δ). Now, the proof of Proposition  1 is complete.

A.2. Proof of Theorem  1

First of all, note that
GT
1G1 − GT

1,♯G1,♯

= (G1 − G1,♯)TG1 + [(G1,♯ − G1) + G1]
T (G1 − G1,♯)

≤ ∥G1 − G1,♯∥2∥G1∥2In + (∥G1,♯ − G1∥2 + ∥G1∥2)
× ∥G1,♯ − G1∥2In.

Then, it follows from Corollary  1 that, with probability at least 
1−δ, GT

1G1−GT
1,♯G1,♯ ≤ ϵ2In+2ϵ∥G1∥2In holds, when N ≥ N0(ϵ, δ). 

Further, we have
λmin(GT

1G1)In ≤GT
1G1 = GT

1G1 − GT
1,♯G1,♯ + GT

1,♯G1,♯

≤ϵ2In + 2ϵ∥G1∥2In + GT
1,♯G1,♯.

Besides, according to Chen (1984, Theorem 6.DO1), GT
1G1 > 0

when Assumptions  1 and 2 hold, which indicates λmin(GT
1G1) > 0

holds. All together, with probability at least 1 − δ, GT
1,♯G1,♯ ≥[

λmin(GT
1G1) − ϵ2 − 2ϵ∥G1∥2

]
In > 0 holds, when N ≥ N0(ϵ, δ)

and ϵ <
√

∥G1∥
2
2 + λmin(GT

1G1)−∥G1∥2. This ensures that G1,♯ has 
full column rank.
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A.3. Proof of Theorem  2

It follows from (5) that
A − A♯ = (G†

1 − G†
1,♯)G1A + G†

1,♯(G2 − G2,♯)

= G†
1,♯(G1,♯ − G1)A + G†

1,♯(G2 − G2,♯),

where the last ‘‘=’’ is based on G†
1,♯G1,♯ = G†

1G1 = In. According to 
the results revealed in Corollary  1, ∥A−A♯∥2 ≤ ∥G†

1,♯∥2(∥A∥2+1)ϵ
holds when N ≥ N0(ϵ, δ) with ϵ < ϵ0 in (16). Since G†

1,♯ =

(GT
1,♯G1,♯)−1GT

1,♯, we have

∥G†
1,♯∥2 =

√
λmax

(
(G†

1,♯)TG
†
1,♯

)
=

√
λmax

(
G†
1,♯(G

†
1,♯)T

)
=

√
λmax

(
(GT

1,♯G1,♯)−1
)

=

√
1/λmin

(
GT
1,♯G1,♯

)
≤

√
1/(λmin(GT

1G1) − ϵ2 − 2ϵ∥G1∥2).

Hence, ∥A∥2∥G
†
1,♯∥2 + ∥G†

1,♯∥2 is uniformly bounded. Similarly, 
with probability at least 1 − δ,

∥B − B♯∥2 ≤ ∥G†
1,♯∥2(∥B∥2 + 1)ϵ,

and ∥C − G4,♯∥2 ≤ ∥G1 − G1,♯∥2 ≤ ϵ hold. Hence, Theorem  2 is 
proved.
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