
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{C}\mathrm{O}\mathrm{N}\mathrm{T}\mathrm{R}\mathrm{O}\mathrm{L} \mathrm{O}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{M}. © 2024 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 62, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. 1521--1545

CONCENTRATION IN GOSSIP OPINION DYNAMICS
OVER RANDOM GRAPHS\ast 

YU XING\dagger AND KARL H. JOHANSSON\dagger 

Abstract. We study concentration inequalities in gossip opinion dynamics over random graphs.
In the model, a network is generated from a random graph model with independent edges, and agents
interact pairwise randomly over the network. During the process, regular agents average neighbors'
opinions and then update, whereas stubborn agents do not change opinions. To approximate the
original process, we introduce a gossip model over an expected graph, obtained by averaging all
possible networks generated from the random graph model. Using concentration inequalities, we
derive high-probability bounds for the distance between the expected final opinion vectors over the
random graph and over the expected graph. Leveraging matrix perturbation results, we show how
such concentration can help study the effect of network structure on the expected final opinions in
two cases: (i) When the influence of stubborn agents is large, the expected final opinions polarize
and are close to stubborn agents' opinions. (ii) When the influence of stubborn agents is small,
the expected final opinions are close to each other. With the help of concentration inequalities for
Markov chains, we obtain high-probability bounds for the distance between time-averaged opinions
and the expected final opinions over the expected graph. In simulation, we validate the theoretical
findings and study a gossip model over a stochastic block model that has community structure.

Key words. opinion dynamics, social networks, random graphs, concentration
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DOI. 10.1137/23M1545823

1. Introduction. Social opinion dynamics studies how interactions over net-
works shape individual opinion evolution and has various applications [46, 62]. The
last two decades have witnessed great developments in the study of opinion dynam-
ics. Numerous mathematical approaches have been applied to modeling and analysis
of such dynamics [13, 26, 47]. Most existing studies have focused on asymptotic be-
havior of opinion evolution and qualitative characterization of opinion distributions,
such as consensus and polarization. An open problem is how to analyze the influence
of specific network structure on the opinion evolution within a unified framework
[26, 47]. For example, community structure describes the property that subgroups of
agents are connected densely with each other but loosely with other subgroups, which
is often observed in reality [27, 31]. But how to quantify the relationship between the
opinion evolution and the community structure is still not clear. It is well-known that
many network properties can be modeled by random graph models [7, 41, 54]. Com-
bining random graph theory with the study of opinion dynamics can provide insight
into linking microscopic agent updates to macroscopic system behaviors [26, 47] and
offering quantitative predictions for real opinion evolution [28].
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1522 YU XING AND KARL H. JOHANSSON

(a) Perfect consensus. (b) Polarization. (c) Clustering. (d) Dissensus.

Fig. 1. Different categories of opinion distributions (terminology from [19]). (a) Perfect con-
sensus in severity of climate change, where 0means ``don't know,"" 1 ``not serious,"" 2 ``fairly serious,""
and 3 ``very serious."" Almost all survey respondents in Spain regard climate change as a very se-
rious problem [23]. (b) Polarization of proenviormental votes on legislation from U.S. senators in
2015, where Democrats show a high percentage of proenvironmental votes but Republicans show a
low percentage. The political elites hold extreme positions in line with their parties (source: League
of Conservation Voters) [21]. (c) Clustering of opinions on whether people should maintain their
distinct cultural identities [20]. Three clusters can be observed on the left, middle, and right, re-
spectively. (d) Dissensus of French political opinions from European Social Survey 2012. Individual
opinions are diverse, with most of them held by a nonnegligible number of people.

Let us consider a motivating example about diverse types of opinion distributions
and how these distributions can be captured by a simple networked dynamical model.

Example 1.1. Various types of opinion distributions can be observed in real-life
scenarios. A common phenomenon is consensus, which occurs when individuals reach
the same opinion on a particular issue, as shown in Figure 1(a). A group can diverge
into two factions adopting opposite extreme views, which is known as polarization
and illustrated by Figure 1(b). Another type of opinion distributions is clustering,
where individuals form two or more clusters, as demonstrated in Figure 1(c). Finally,
dissensus can often be found in surveys [19, 26], where most opinions are each held
by a substantial number of people, as shown in Figure 1(d).

The rich opinion behaviors illustrated above can be captured by simple network
models. In this paper, we study a gossip model with stubborn agents that is able to
generate these behaviors. From this model, we can analytically quantify the influence
of network structure and stubborn agents on final opinions of nonstubborn agents.
Consensus occurs if the stubborn agents have small influence, whereas polarization
occurs if their influence is large. When the influence of stubborn agents is moder-
ate, opinion distributions can exhibit multiple peaks, corresponding to community
structure of the network. These results can be developed in a unified quantitative
framework.

1.1. Related work. Individual opinions represent personal attitudes toward
topics, events, or other persons and can be modeled by scalar or vector quantities
[13, 47]. Opinion dynamics describe how opinions evolve through interpersonal in-
teractions. Continuous-state models are studied in this paper. The French--DeGroot
(FD) model [18] shows how consensus is reached, where agents update by averag-
ing their neighbors' opinions. Extensions of the model have been studied extensively
[6, 12]. The gossip model generalizes the FD model by including random interac-
tions between agents, and the model can exhibit various behavior such as consensus
[9, 24], disagreement, and opinion fluctuations [1]. The Friedkin--Johnsen model [29]
is another generalization of the FD model. It allows agents to be affected by their
initial opinions and generates long-term disagreement. Bounded confidence models
(the Hegselmann--Krause model [32] and the Deffuant--Weisbuch (DW) model [17]) ex-
plore how homophily influence shapes the opinion evolution. In these models, agents
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CONCENTRATION IN GOSSIP OPINION DYNAMICS 1523

interact only with those who hold beliefs similar to them, and tend to form clusters.
Models [2, 50] with negative or antagonistic interactions, enlarging opinion difference,
may end in polarization. In addition to interpersonal influences, stubborn agents also
play crucial roles in opinion formation. These agents are assumed to never change
opinions, representing opinion leaders and media sources. It has been shown that
stubborn agents' opinions can determine the final opinions of the FD model [47]. In
the gossip model with stubborn agents, opinion fluctuations and long-term disagree-
ment exist, but nonstubborn agents can have similar expected final opinions if the
network is highly fluid [1]. In contrast, for agents forming two communities connected
to different stubborn agents, their final positions polarize if the influence of stubborn
agents is large [16]. The current paper revisits this classic model and shows how to
quantify the process in more detail with the help of random graph modeling.

Real networks often consist of numerous agents. To study large-scale group be-
havior, researchers have proposed macroscopic models which consider the evolution
of opinion distributions. Eulerian approaches were introduced for analyzing bounded
confidence models [11, 36, 39] and spatially distributed ordinary differential equa-
tions [43]. Graphon theory has been used recently for modeling heterogeneous large-
scale networks, and the convergence of Euler approximations of mean-field games has
been studied [5, 10]. Random graph theory is another framework for large-scale net-
work modeling [7, 8, 41, 42, 54]. The field was founded by Erd\H os and R\'enyi [22] for
studying probabilistic methods in graph theory. Since then various random graph
models [3, 56] have been found to be useful in studying complex networks, such as
small-world and scale-free networks [41, 42, 54]. Random graphs have concentration
properties; for instance, adjacency and Laplacian matrices can be close to their ex-
pectations [15, 37, 53]. The influence of network structure on epidemics, dynamical
systems, and search processes has been studied extensively [41]. The stochastic block
model (SBM) was introduced by [34] to explain the generation of community structure.
Papers studying the influence of community structure on opinion evolution mainly fo-
cus on mean-field approximations and simulation (e.g., for the DW model [25, 30], the
Sznajd model [51], three-state opinion models [44], and a majority-vote model [45]).

1.2. Contribution. In this paper we study concentration in the gossip model
over random graphs. We compare the model with a gossip model over an expected
graph that is obtained by averaging all possible networks generated from the random
graph model. We show that the expected final opinions of regular agents in the
original model concentrate around those over the expected graph (Theorem 4.3). The
distance between the two opinion vectors can be bounded by a quantity depending on
the maximum and minimum expected degrees and stubborn-agent opinions. Using
matrix perturbation theory, we study the effect of network structure and stubborn
agents on the expected final opinions over the expected graph (Theorem 4.7): (i) When
the influence of stubborn agents is large, regular agents hold final opinions close to
stubborn agents. (ii) When the influence of stubborn agents is small, regular agents
have final opinions close to each other. We obtain similar conclusions on the effect
of network structure on the expected final opinions over the random graph (Theorem
4.9). We also provide bounds for the distance between time-averaged opinions and
the expected final opinions over the expected graph (Theorem 4.11).

It is found that, unlike classic concentration results for adjacency and Laplacian
matrices [15, 37, 53], the concentration of expected final opinions depends on the rel-
ative magnitude of the maximum and minimum expected degrees in a random graph.
Different from convergence and stability analysis [4, 5, 10, 11, 39], the current paper
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1524 YU XING AND KARL H. JOHANSSON

quantifies the influence of network structure on opinion distributions. In particular,
a unified framework is developed for approximating expected final opinions and time-
averaged opinions (Theorems 4.3, 4.7, 4.9, and 4.11). Consequently, we can analyze
the effect of network structure and stubborn agents on expected final opinions, pro-
vide conditions for the emergence of consensus [1] and polarization [16], and establish
correspondence between opinion evolution and community structure (see section 5).
The gossip model over a two-community SBM is studied in the conference version
[59]. The current paper studies concentration over general random graphs, explores
the influence of network structure, and quantifies time-averaged opinions.

Because random graphs are widely used in modeling real networks [7, 41, 42, 54],
the current framework enables quantitative prediction of opinion evolution. More pre-
cisely, given a network, it is possible to establish random graph models from network
properties, determine qualitative results for the evolution (e.g., whether polarization
or consensus would happen), and then give high-probability bounds for the prediction.
The obtained correspondence between community structure and agent opinions can
inspire design of community detection methods based on state observations [49, 58].
Suppose that the network is unknown but a trajectory of opinion evolution is avail-
able. It is possible to recover agent community labels by clustering agent states.
Developing such a community detection algorithm is not done in this paper, but some
further discussion on the problem is provided at the end of section 4.

1.3. Outline. The paper is organized as follows. We describe the gossip model
and random graph models in section 2 and formulate the problem in section 3. Sec-
tion 4 provides main results, section 5 presents numerical experiments, and section 6
concludes the paper. Proofs are provided in the appendix.

Notation. Denote the n-dimensional Euclidean space by \BbbR n, the set of n \times m
real matrices by \BbbR n\times m, the set of nonnegative integers by \BbbN , and the set of positive
integers by \BbbN + =\BbbN \setminus \{ 0\} . Denote the natural logarithm by logx, x> 0.

Let 1n be the n-dimensional all-one vector, e
(n)
i be the n-dimensional unit vector

with ith entry being one, In be the n \times n identity matrix, and 0m,n be the m \times n
all-zero matrix. For a vector x \in \BbbR n, denote its ith entry by xi, and for a matrix
A \in \BbbR n\times n, denote its (i, j)th entry by aij or [A]ij . Denote the Euclidean norm
of a vector and the spectral norm of a matrix by \| \cdot \| . Let \rho (A) be the spectral
radius of a square matrix A. For symmetric A \in \BbbR n\times n, denote its eigenvalues by
\lambda min(A) := \lambda 1(A)\leq \lambda 2(A)\leq \cdot \cdot \cdot \leq \lambda n(A) =: \lambda max(A). By diag(A1, . . . ,Ak) denote the
diagonal or block diagonal matrix with A1, . . . , Ak on the diagonal.

The cardinality of a set \scrS is written as | \scrS | . An event A happens almost surely
(a.s.) if \BbbP \{ A\} = 1. For a sequence of events An, we say An happens with high
probability (w.h.p.) if \BbbP \{ An\} \rightarrow 1 as n\rightarrow \infty . For two sequences of real numbers, f(n)
and g(n)> 0, n\in \BbbN , we write f(n) =O(g(n)) if | f(n)| \leq Cg(n) for all n\in \BbbN and some
C > 0, and write f(n) = o(g(n)) if | f(n)| /g(n)\rightarrow 0. Suppose f(n) > 0 for all n \in \BbbN .
Write f(n) = \omega (g(n)) if g(n) = o(f(n)), and write f(n) = \Omega (g(n)) if g(n) = O(f(n)).
For x, y \in \BbbR , denote their maximum by x \vee y := max\{ x, y\} and their minimum by
x\wedge y :=min\{ x, y\} . An undirected graph \scrG = (\scrV ,\scrE ,A) has an agent set \scrV , an edge set
\scrE , and an adjacency matrix A= [aij ] with aij = 1 (aij = 0) if \{ i, j\} \in \scrE (\{ i, j\} \not \in \scrE ).

2. Preliminaries. In this section, we introduce network and dynamic models
studied in the paper. Section 2.1 describes a random graph model, and section 2.2
introduces the gossip model. We describe a random graph model with stubborn agents
in section 2.3 and the gossip model over random graphs in section 2.4.
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CONCENTRATION IN GOSSIP OPINION DYNAMICS 1525

2.1. Random graph model. In this subsection, we describe a random graph
model motivated by capturing properties of real-world networks. This random graph
model assumes that edges in a network are generated independently [8, 14].

Definition 2.1 (random graph model). Let \scrV = \{ 1, . . . , n\} with n\in \BbbN + be the set
of agents and the symmetric matrix \Psi = [\psi ij ]\in [0,1]n\times n be the link probability matrix.
In the random graph model RG(n,\Psi ), an undirected random graph \scrG = (\scrV ,\scrE ,A) with-
out self-loops is constructed by adding an undirected edge \{ i, j\} to \scrE with probability
\psi ij independent of other agent pairs for all i, j \in \scrV with i \not = j.

The preceding definition is general and includes many classic examples.

Example 2.2.
(i) When \psi ij \equiv \psi \in [0,1] for all i, j \in \scrV , the random graph model is one version of

the Erd\H os--R\'enyi model [54], where each edge exists with the same probability.
(ii) Let w = [w1, . . . ,wn]

T \in \BbbR n with wi \geq 0 and maxiw
2
i <

\sum 
kwk, and \psi ij =

wiwj/(
\sum 

kwk). RG(n,\Psi ) generates graphs with the expected degree sequence
w [14].

(iii) Assume that the agent set \scrV has K \in \BbbN + disjoint subsets called communities,
\scrV 1, . . . , \scrV K , and denote the community label of i \in \scrV k by \scrC i = k, 1\leq k \leq K.
Let the symmetric matrix \Pi = [\pi ij ]\in [0,1]K\times K be the link probability matrix
for edges within and between communities. RG(n,\Psi ) with \psi ij = \pi \scrC i\scrC j , i \not = j,
and \psi ii = 0 is the SBM [34] that intuitively shows the formation of community
structure.

2.2. Gossip model with stubborn agents. In this subsection, we introduce
the gossip model with stubborn agents and discuss its basic properties.

A gossip model with stubborn agents (we call it ``the gossip model"" hereafter
for short) is a random process evolving over a graph \scrG = (\scrV ,\scrE ,A). The agent set \scrV 
contains regular agents \scrV r = \{ 1, . . . , nr\} and stubborn agents \scrV s = \{ 1+nr, . . . , ns+nr\} ,
and the network size is n = | \scrV | = nr + ns. A regular agent i has opinion Xi(t) \in \BbbR 
at time t \in \BbbN . A stubborn agent j has opinion z

(s)
j and never changes it. Stacking

the opinions, we denote the opinion vector of regular agents at time t by X(t) \in \BbbR n\mathrm{r}

and that of stubborn agents by z(s) \in \BbbR n\mathrm{s} (for simplicity, we use z
(s)
j to represent

the opinion of j, instead of z
(s)
j - n\mathrm{r}

). At each time, an edge is selected, and the two
corresponding agents interact. The selection is modeled by an interaction probability
matrix W = [wij ] \in \BbbR n\times n depending on the adjacency matrix A, where wij = wji =
aij/\alpha and \alpha =

\sum n
i=1

\sum n
j=i+1 aij is the number of edges. An edge \{ i, j\} is selected

with probability wij , independently of the previous update. The two chosen agents
are the only agents to update at time t. If both i and j are regular, then Xi(t+1) =
Xj(t+ 1) = (Xi(t) +Xj(t))/2. If one of them is stubborn, say, j, then i updates as

Xi(t+ 1) = (Xi(t) + z
(s)
j )/2. The update rule can be written as

X(t+ 1) =Q(t)X(t) +R(t)z(s).(2.1)

Here \{ [Q(t) R(t)]\} is a sequence of independent and identically distributed random
matrices such that with probability wij

[Q(t)R(t)] =

\Biggl\{ 
[Inr

 - 1
2 (e

(n\mathrm{r})
i  - e

(n\mathrm{r})
j )(e

(n\mathrm{r})
i  - e

(n\mathrm{r})
j )T, 0n\mathrm{r},n\mathrm{s}

] if i, j \in \scrV r,

[Inr
 - 1

2e
(n\mathrm{r})
i (e

(n\mathrm{r})
i )T, 1

2e
(n\mathrm{r})
i (e

(n\mathrm{s})
j )T] if i\in \scrV r, j \in \scrV s,

(2.2)

where we use e
(n\mathrm{s})
j to represent e

(n\mathrm{s})
j - n\mathrm{r}

for j \in \scrV s for notation simplicity.
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1526 YU XING AND KARL H. JOHANSSON

Denote the expected interaction matrices by \=Q := \BbbE \{ Q(t)\} and \=R := \BbbE \{ R(t)\} .
The following results [1] (the paper studies the model in continuous time; see, e.g.,
[48, 58] for analysis of discrete-time versions) indicate that the expected final opinions
depend on the expected interaction matrices and opinions of stubborn agents.

Proposition 2.3 (stability and limit theorems). Suppose that \scrG is connected
and has at least one stubborn agent. The following results hold for the gossip model
(2.1).

(i) The model has a unique stationary distribution \pi with mean x, and X(t)
converges in distribution to \pi as t\rightarrow \infty . The expected final opinions x satisfy
that

x= lim
t\rightarrow \infty 

\BbbE \{ X(t)\} = (I  - \=Q) - 1 \=Rz(s).(2.3)

(ii) Denote the time-averaged opinions by S(t) := 1
t

\sum t - 1
i=0X(i). Then

lim
t\rightarrow \infty 

S(t) = x a.s.

The results show that agent opinions converge in distribution to a stationary dis-
tribution, although they may fluctuate a.s. [1]. Also, the time-averaged opinion vector
S(t) converges to x, which characterizes the average final positions of regular agents.

2.3. Random graphs with stubborn agents. To study the interplay between
network structure and stubborn agents, we introduce the following definition of ran-
dom graph model with stubborn agents.

Definition 2.4 (random graph with stubborn agents, RG-S). Let \scrV r = \{ 1, . . . , nr\} 
be the set of regular agents, \scrV s = \{ 1 + nr, . . . , nr + ns\} be the set of stubborn agents,
and n = nr + ns be the network size, where nr, ns \in \BbbN +. Let the symmetric ma-

trix \Psi (r) = [\psi 
(r)
ij ] \in [0,1]nr\times nr be the link probability matrix for edges between regular

agents, and let \Psi (s) = [\psi 
(s)
ij ]\in [0,1]nr\times ns be the link probability matrix for edges between

regular and stubborn agents.
In the random graph model with stubborn agents RG-S(nr, ns,\Psi 

(r),\Psi (s)), a ran-
dom graph \scrG = (\scrV ,\scrE ,A) with \scrV = \{ 1, . . . , n\} is constructed according to the following
rule: (i) A random graph for the regular agents is generated from RG(nr,\Psi 

(r)). (ii)
For each regular agent i \in \scrV r and stubborn agent j \in \scrV s, the edge \{ i, j\} is added to \scrE 
with probability \psi 

(s)
i,j - nr

, independent of other agent pairs.

The RG-S includes stubborn agents in the network, and the link probability
matrix \Psi (s) captures the influence strength of stubborn agents on regular agents.

2.4. Gossip model over random graphs. The previous subsections described
the random graph models and the gossip model. In this subsection, we bring these
models together. Suppose that a random graph \scrG is constructed from an RG-S, and
over a realization of \scrG the gossip model takes place:

X\scrG (t+ 1) =Q\scrG (t)X\scrG (t) +R\scrG (t)z(s),(2.4)

where X\scrG (t) is the opinion vector and the superscript \scrG highlights the dependence
of the process on \scrG . Here [Q\scrG (t) R\scrG (t)] has the expression given in (2.2) but its
distribution is defined by the interaction probability matrix W\scrG =A/\alpha \scrG , where A is
the adjacency matrix of \scrG and \alpha \scrG is the number of edges in \scrG .
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CONCENTRATION IN GOSSIP OPINION DYNAMICS 1527

Denote the expected interaction matrices by \=Q\scrG := \BbbE \scrG \{ Q\scrG (t)\} and \=R\scrG := \BbbE \scrG 
\{ R\scrG (t)\} (they are conditional expectations with respect to \scrG ). If (I  - \=Q\scrG ) - 1 exists,
the expected final opinion vector of the model can be written as

x\scrG ,n := lim
t\rightarrow \infty 

\BbbE \scrG \{ X\scrG (t)\} = (I  - \=Q\scrG ) - 1 \=R\scrG z(s),(2.5)

where we use the superscripts \scrG and n to indicate that the expected final opinions
depend on the random graph \scrG and the network size n.

To study behavior of the gossip model, we introduce a reference without network
randomness. By averaging the random graph \scrG = (\scrV ,\scrE ,A), we obtain the expected
graph \=\scrG = (\scrV , \=\scrE ,\BbbE \{ A\} ), where \BbbE \{ A\} is the expected adjacency matrix. Define a
gossip model over this weighted graph \=\scrG as follows.

Definition 2.5 (gossip model over expected graph). Consider a random graph
model RG-S(nr, ns,\Psi 

(r),\Psi (s)) and its expected graph \=\scrG = (\scrV , \=\scrE ,\BbbE \{ A\} ) obtained by
averaging all graphs generated from the RG-S. The gossip model over the expected
graph is the following model that evolves over \=\scrG :

X\ast (t+ 1) =Q\ast (t)X\ast (t) +R\ast (t)z(s),

where X\ast (t) is the opinion vector, and [Q\ast (t) R\ast (t)] has the same expression as
in (2.2) but its distribution is defined by the interaction probability matrix W \ast =
\BbbE \{ A\} /\alpha \ast . Here \alpha \ast =

\sum n
i=1

\sum n
j=i+1\BbbE \{ aij\} is the weight sum of the expected graph.

Denote the expected interaction matrices by \=Q\ast :=\BbbE \{ Q\ast (t)\} and \=R\ast :=\BbbE \{ R\ast (t)\} .
The expected final opinions of the model over the expected graph can be written as

x\ast ,n := lim
t\rightarrow \infty 

\BbbE \{ X\ast (t)\} = (I  - \=Q\ast ) - 1 \=R\ast z(s).(2.6)

In what follows we briefly explain the relations between quantities in the gossip model
over the RG-S and those over the expected graph. From (2.5) we know that \=Q\scrG 

and \=R\scrG determine the expected final opinion vector x\scrG ,n. The expected interaction
matrices \=Q\scrG and \=R\scrG over the RG-S can be shown to have the following expressions:
\=Q\scrG = In\mathrm{r}

 - \=M\scrG /(2\alpha \scrG ) and \=R\scrG = \=U\scrG /(2\alpha \scrG ), where \alpha \scrG is the number of edges in \scrG ,

\=M\scrG :=

\left[ 
     

d1  - a12 . . .  - a1,n\mathrm{r}

 - a21 d2
...

...
. . .  - an\mathrm{r} - 1,n\mathrm{r}

 - an\mathrm{r},1 . . .  - an\mathrm{r},n\mathrm{r} - 1 dn\mathrm{r}

\right] 
     
, \=U\scrG :=

\left[ 
  
a1,n\mathrm{r}+1 . . . a1n

...
...

an\mathrm{r},n\mathrm{r}+1 . . . an\mathrm{r},n

\right] 
  ,

(2.7)

and di is the degree of the agent i. Note that \=M\scrG and \=U\scrG depend on the adjacency
matrix A of \scrG . For the gossip model over the expected graph, its expected final
opinion x\ast ,n is determined by the expected interaction matrices \=Q\ast and \=R\ast . The two
matrices are related to the expectations of \=M\scrG , \=U\scrG , and \alpha \scrG , i.e., \=Q\ast = In\mathrm{r}

 - \=M\ast /(2\alpha \ast )
and \=R\ast = \=U\ast /(2\alpha \ast ) =\Psi (s)/(2\alpha \ast ), where

\=M\ast :=\BbbE \{ \=M\scrG \} , \=U\ast :=\BbbE \{ \=U\scrG \} =\Psi (s), \alpha \ast =\BbbE \{ \alpha \scrG \} .(2.8)

Figure 2 summarizes the relations between the aforementioned quantities and illus-
trates the gossip models over the RG-S and the expected graph.
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1528 YU XING AND KARL H. JOHANSSON

Fig. 2. Illustration of a gossip model over an RG-S and a gossip model over an expected graph.
On the top left of the figure, a random graph \scrG is constructed from an RG-S. Circles and squares
represent regular and stubborn agents, respectively. On the top middle, a gossip model evolves over \scrG ,
where a single existing edge is selected at each time. On the top right, the expression of the expected
final opinion vector is given. On the bottom left, the expected graph \=\scrG is obtained by averaging the
random graph \scrG . On the bottom middle, a gossip model evolves over the expected graph, where an
edge is selected with probability proportional to its weight in the expected adjacency matrix. On the
bottom right, the expression of the expected final opinion vector over the expected graph is given.

3. Problem formulation. This section formulates the problems of interest.
The first problem that we consider is when the expected final opinion vector x\scrG ,n

concentrates around the expected final opinion vector over the expected graph x\ast ,n:

Problem 1. Given an RG-S and the gossip model (2.4), provide high-probability
bounds for the distance \| x\scrG ,n  - x\ast ,n\| .

Random graph models have concentration properties [15, 53, 55]. For example,
the eigenvalues of the adjacency matrix of a random graph with independent edges
concentrate around those of the expected graph, and the concentration error depends
on the maximum expected degree [15]. Concentration inequalities can also be used in
deriving degree conditions for connectivity of random graphs [53]. Problem 1 arises
naturally from these observations, but concerns the concentration of expected final
opinions, rather than the random graph. The problem is addressed by Theorem 4.3 in
section 4.1, where conditions for x\scrG ,n concentrating around x\ast ,n are given.

The second problem is to provide conditions for polarization or consensus of x\scrG ,n.

Problem 2. Given an RG-S and the gossip model (2.4), provide conditions for
(i) the entries of x\scrG ,n are close to opinions of stubborn agents,
(ii) the entries of x\scrG ,n are close to each other.

This problem concerns how network structure and stubborn agents shape the
profile of the expected final opinions x\scrG ,n. Note that \BbbE \{ A\} has a simpler form than
A, so it is easier to characterize x\ast ,n (Theorem 4.7). Then using the solution to
Problem 1, we are able to address Problem 2 in Theorem 4.9. When the network has
community structure, according to Theorem 4.3, the expected final opinions can have
clusters in line with the communities, which is illustrated in section 5. In this way we
address the problem presented in Example 1.1 for the gossip model.
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CONCENTRATION IN GOSSIP OPINION DYNAMICS 1529

Finally, we derive bounds for the distance between the time-averaged opinions
S\scrG (t) = (

\sum t - 1
i=0X

\scrG (i))/t and the expected final opinions over the expected graph x\ast ,n.

Problem 3. Given an RG-S and the gossip model (2.4), provide high-probability
bounds for the distance \| S\scrG (t) - x\ast ,n\| .

This problem is important because only agent opinions can be observed in practice,
rather than the expected opinions. From Proposition 2.3 we know that it is possible to
use time-averaged opinions to estimate the expected opinions. Studying this problem
can help us understand how network structure and stubborn agents affect transient
behavior of the process. The result is given by Theorem 4.11 in section 4.2.

4. Main results. In this section, we first study the expected final opinions of
the gossip model, by comparing them with those over the expected graph. We then
investigate the behavior of time-averaged opinions.

4.1. Concentration of expected final opinions. In this subsection, we study
properties of the expected final opinions x\scrG ,n. Theorem 4.3 shows that the distance
\| x\scrG ,n  - x\ast ,n\| can be bounded by a term depending on maximum and minimum
expected degrees of the RG-S w.h.p. Next, we study in Theorem 4.7 how x\ast ,n is
influenced by network structure and stubborn agents. Finally, we characterize the
profile of x\scrG ,n in Theorem 4.9 by combining Theorems 4.3 and 4.7.

To begin with, we introduce the following notation. For an agent i \in \scrV , we refer
to the number of regular agents connected to i as its regular degree (denoted as d

(r)
i )

and refer to the number of stubborn agents connected to i as its stubborn degree
(denoted as d

(s)
i ). The degree of i is the sum of its regular and stubborn degrees, i.e.,

di = d
(r)
i +d

(s)
i . The following quantities of the expected graph will be used frequently

in the analysis. Let
\bullet \Delta r :=maxi\in \scrV \mathrm{r}\{ \BbbE \{ di\} \} be the maximum expected degree of regular agents,

\bullet \Delta rr :=maxi\in \scrV \mathrm{r}\{ \BbbE \{ d
(r)
i \} \} be the maximum expected regular degree of regular

agents,
\bullet \Delta rs := maxi\in \scrV \mathrm{r}\{ \BbbE \{ d

(s)
i \} \} be the maximum expected stubborn degree of reg-

ular agents,
\bullet \Delta sr := maxi\in \scrV \mathrm{s}

\{ \BbbE \{ d(r)i \} \} be the maximum expected regular degree of stub-
born agents,

\bullet \delta rs :=mini\in \scrV \mathrm{r}
\{ \BbbE \{ d(s)i \} \} be the minimum expected stubborn degree of regular

agents.
Assumptions of the main results are given below. The first assumption ensures

large enough minimum expected stubborn degree \delta rs, whereas the second assumption
states lower bounds for the smallest eigenvalue of \=M\ast , given in (2.8), and for max-
imum expected degrees \Delta r, \Delta rs, and \Delta sr. The third assumption ensures that the
gossip models over the RG-S and over the expected graph start with the same initial
condition. The last assumption gives a lower bound for the number of regular agents.

Assumption 4.1. Assume that the following conditions hold.
(i.1) \delta rs > 8 logn.
(i.2) \lambda 1( \=M\ast )> 4

\surd 
\Delta r logn, \Delta r \geq logn, and \Delta rs \vee \Delta sr \geq logn.

(ii) Both the gossip model over the RG-S and the gossip model over the expected
graph have the same initial condition X(0) and stubborn-agent opinions

z(s). In addition, maxi\in \scrV \mathrm{r}
\{ | Xi(0)| \} \vee maxj\in \scrV \mathrm{s}

\{ | z(s)j | \} \leq cx for some constant
cx > 0.

(iii) There exists a constant cr \in (0,1) such that the proportion of regular agents
r0 := nr/n> cr for all n\in \BbbN +.
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1530 YU XING AND KARL H. JOHANSSON

Remark 4.2. The condition (i.1) requires that every regular agent has positive
probability connected to some stubborn agent, whereas the condition (i.2) allows the
existence of regular agents not connected to any stubborn agents. Note that \lambda 1( \=M\ast )\geq 
\delta rs but (i.1) does not imply (i.2): Consider \BbbE \{ d(r)i \} = (logn)2 and \BbbE \{ d(s)i \} = 9 logn,
i\in \scrV r. Then \delta rs > 8 logn but \lambda 1( \=M\ast ) = 9 logn<

\surd 
\Delta r logn for large n. The condition

(iii) assumes that the number of regular agents is proportional to the network size,
which is necessary for entrywise concentration studied in Proposition 4.5.

We now state the first main theorem, which studies the concentration of x\scrG ,n and
provides a high-probability bound for the distance between x\scrG ,n and x\ast ,n.

Theorem 4.3 (concentration of expected final opinions). For x\scrG ,n and x\ast ,n given
in (2.5) and (2.6), respectively, the following results hold.

(i) Under Assumption 4.1(i.1) and (ii), it holds that

\BbbP \{ \| x\scrG ,n  - x\ast ,n\| \leq \varepsilon x,n\| z(s)\| \} \geq 1 - \eta x,n,(4.1)

where

\varepsilon x,n = 4

\biggl( \sqrt{} 
(\Delta rs \vee \Delta sr) logn

\delta rs
+

2
\surd 
\Delta r logn\| \Psi (s)\| 

\delta 2rs

\biggr) 
,

\eta x,n = r0n
1 - \delta rs

8 \mathrm{l}\mathrm{o}\mathrm{g}n + 2(1 + r0)n
 - 1

5 + 2n - 
2
3 ,

and r0 = nr/n is the proportion of regular agents.
(ii) Under Assumption 4.1(i.2) and (ii), (4.1) holds with

\varepsilon x,n = 2

\biggl( \sqrt{} 
(\Delta rs \vee \Delta sr) logn

\lambda 1( \=M\ast ) - 4
\surd 
\Delta r logn

+
2
\surd 
\Delta r logn\| \Psi (s)\| 

\lambda 1( \=M\ast )(\lambda 1( \=M\ast ) - 4
\surd 
\Delta r logn)

\biggr) 
,

\eta x,n = 2(1 + r0)n
 - 1

5 + 2n - 
1
8 .

Proof. See Appendix B.

Remark 4.4. The first result indicates that the distance between x\scrG ,n and x\ast ,n

can be bounded by a quantity depending on expected degrees multiplied by the norm
of stubborn agent opinions z(s), with probability relying on the network size n, the
proportion of regular agents r0, and the minimum expected stubborn degree \delta rs.
The second result studies the case where \delta rs = 0 and replaces \delta rs with terms related
to \lambda 1( \=M\ast ). Note that \lambda 1( \=M\ast ) \geq \delta rs represents the minimum expected influence of
stubborn agents on regular agents. A lower bound of \lambda 1( \=M\ast ) can be found in [38].
Neither (i.1) nor (i.2) of Assumption 4.1 guarantees connectivity of the random graph,
but they ensure that each connected component is influenced by some stubborn agents
w.h.p. Assumption 4.1(i.1) implies ns =\Omega (logn), and \Delta rs\vee \Delta sr \geq logn in (i.2) implies
nr \vee ns = \Omega (logn). To derive entrywise concentration (Proposition 4.5), a larger
lower bound nr \geq crn (Assumption 4.1(iii)) is needed. In contrast, ns need not be
proportional to n, as long as the link probability between regular and stubborn agents
is large enough. Classic concentration bounds for adjacency and Laplacian matrices
[15, 37] contain the maximum or minimum expected degree. Our results show that
the concentration of expected final opinions depends on the relative magnitude of the
two expected degrees. The logarithmic term in the bounds may be removed [37], as
suggested in section 5. We leave the improvement to future work.

From Theorem 4.3(i) we can obtain the following proposition. The proposition
provides an entrywise approximation of x\scrG ,n using x\ast ,n, lower bounding the number
of entries of x\scrG ,n that are close to those of x\ast ,n.
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CONCENTRATION IN GOSSIP OPINION DYNAMICS 1531

Proposition 4.5 (entrywise concentration). For \varepsilon > 0 denote \scrV \varepsilon ,n := \{ i \in \scrV r :
| x\scrG ,n

i  - x\ast ,n
i | > \varepsilon \} . Suppose Assumptions 4.1 (ii) and (iii) hold, and \delta rs = \omega ((logn) \vee \sqrt{} 

(\Delta r logn)1/2(\Delta rs \vee \Delta sr)). Then for all \varepsilon > 0, | \scrV r \setminus \scrV \varepsilon ,n| = nr(1 - o(1)) w.h.p.

Proof. See Appendix C.

Remark 4.6. The result shows that most entries of x\scrG ,n are close to x\ast ,n if regular
agents constitute the majority of the network and the minimum expected stubborn
degree is large enough. As a consequence, the opinion mean 1T

n\mathrm{r}
x\scrG ,n/nr is close to its

expected version 1T
n\mathrm{r}
x\ast ,n/nr.

Relating x\scrG ,n to its expected version x\ast ,n can help us quantify x\scrG ,n in more detail.
To show this, we first investigate properties of x\ast ,n. Let

\=L\scrG :=

\left[ 
   

d
(r)
1  - a12 . . .  - a1,n\mathrm{r}

...
...

 - an\mathrm{r},1 . . .  - an\mathrm{r},n\mathrm{r} - 1 d
(r)
n\mathrm{r}

\right] 
   

be the Laplacian of the subgraph induced by regular agents, and denote its expectation
by \=L\ast :=\BbbE \{ \=L\scrG \} . Recall that \Delta rr is the maximum of expected regular degrees \BbbE \{ d(r)i \} ,
1\leq i\leq nr. When regular agents have larger expected stubborn degrees than regular
degrees (\delta rs much larger than \Delta rr), they can have final opinions close to their stubborn
neighbors. In contrast, if regular agents have large expected connectivity among
themselves compared with their expected stubborn degrees (\lambda 2(\=L

\ast ) much larger than
\Delta rs \vee \Delta sr), they can have final opinions close to each other. The theorem below
summarizes these results for the expected final opinions x\ast ,n.

Theorem 4.7 (profile of x\ast ,n). The following results hold for x\ast ,n given in (2.6).
(i) (When stubborn agents have relatively large influence)

If \delta rs = \omega (1\vee 
\sqrt{} 
\Delta rr(\Delta rs \vee \Delta sr)), then

\| x\ast ,n  - (diag(\Psi (s)1ns))
 - 1\Psi (s)z(s)\| = o(\| z(s)\| ).

(ii) (When stubborn agents have relatively small influence)
If \lambda 1( \=M\ast ) = \omega ((\Delta rs\vee \Delta sr)

cM ) and \lambda 2(\=L
\ast ) = \omega (1\vee (\Delta rs\vee \Delta sr)

2 - cM ) for some
cM \in (0,1), then there exists \gamma n \in \BbbR such that \| x\ast ,n  - \gamma n1nr

\| = o(\| z(s)\| ).
Proof. See Appendix D.

Remark 4.8. The first result indicates that, if the influence of stubborn agents
is large enough compared with the link strength between regular agents, then entries
of x\ast ,n are close to opinions of stubborn agents. Thus, polarization may occur if
regular agents are connected separately to two groups of stubborn agents holding
opposite opinions. In contrast, (ii) shows that x\ast ,n is close to a consensus vector
if the influence of stubborn agents is much smaller than the link strength between
regular agents. Note that x\ast ,n is an expectation and X\ast (t) may not converge a.s.

Theorem 4.7(i) only considers the case where every regular agent has positive
probability connected to stubborn agents (i.e., \delta rs > 0). Further results for the case
where \delta rs = 0 can be developed. Denote regular agents that have positive expected
stubborn degrees by 1, . . . , nr1 and the rest of the regular agents by nr1, . . . , nr1+nr2,
where nr1 + nr2 = nr. That is, \BbbE \{ d(s)i \} > 0 for 1 \leq i \leq nr1 and \BbbE \{ d(s)i \} = 0 for
nr1 + 1, . . . , nr. Hence \=M\ast given in (2.8) and the link probability matrix \Psi (s) can be
written in block structures as follows:
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1532 YU XING AND KARL H. JOHANSSON

(4.2)
M̄∗ =

M̄∗(11) M̄∗(12) nr1

M̄∗(21) M̄∗(22) nr2

[ ]
nr1︷ ︸︸ ︷

nr2︷ ︸︸ ︷ }
} , Ψ(s) =

Ψ
(s)
+ nr1

0nr2,ns
nr2

[ ]
ns︷︸︸︷ }

} .

The block structures depict the topological relationship between the two types of
regular agents. For agents 1, . . . , nr1, let \delta 

+
rs :=min1\leq i\leq n\mathrm{r}1

\{ \BbbE \{ d(s)i \} \} be their minimum

expected stubborn degree, and let \Delta +
rr := max1\leq i\leq n\mathrm{r}1

\{ \BbbE \{ d(r)i \} \} be their maximum
expected regular degree. These agents have final opinions close to their stubborn
neighbors if they have expected stubborn degrees not only larger than their regular
degrees (\delta +rs much larger than \Delta +

rr), but also larger than the total link strength between
them and the rest of the regular agents (\delta +rs much larger than \| \=M\ast (21)\| ). The agents
nr1 + 1, . . . , nr have final opinions as weighted averages of stubborn opinions, with
weights depending on network structure. The following theorem presents the above
result, extending Theorem 4.7(i).

Theorem 4.7(i)\prime . (When stubborn agents have large influence and \delta rs = 0) If
\lambda 1( \=M\ast (22)) =\Omega (1) and

\delta +rs = \omega 

\Biggl( 
max

\Biggl\{ 
\| \=M\ast (21)\| 

\sqrt{} 
(\Delta rs \vee \Delta sr)

\lambda 1( \=M\ast (22))
,

\sqrt{} 
\Delta +

rr(\Delta rs \vee \Delta sr),1

\Biggr\} \Biggr) 
,(4.3)

then there exists \~M\ast \in \BbbR nr2\times nr1 such that
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| x

\ast ,n  - 

\Biggl[ 
(diag(\Psi 

(s)
+ 1ns))

 - 1\Psi 
(s)
+ z(s)

\~M\ast \Psi (s)
+ z(s)

\Biggr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = o(\| z(s)\| ).

Proof. See Appendix D.

Combining Theorems 4.3 and 4.7 yields the following result, quantifying the ex-
pected final opinions over the RG-S (i.e., x\scrG ,n). The theorem studies two cases. When
the minimum expected stubborn degree \delta rs is large enough compared with maximum
expected degrees, regular agents have final opinions close to their stubborn neighbors.
In contrast, assume that the influence of stubborn agents (\lambda 1( \=M\ast )) is large enough for
concentration to hold. Then regular agents have similar final opinions, when they have
large enough connectivity among themselves compared with their expected stubborn
degrees (\lambda 2(\=L

\ast ) much larger than \Delta rs \vee \Delta sr).

Theorem 4.9 (profile of x\scrG ,n). Suppose that Assumption 4.1(ii) holds.
(i) If \delta rs = \omega ((logn)\vee 

\sqrt{} 
(\Delta rs \vee \Delta sr)[(\Delta r logn)1/2 \vee \Delta rr]), then w.h.p.

\| x\scrG ,n  - (diag(\Psi (s)1ns))
 - 1\Psi (s)z(s)\| = o(\| z(s)\| ).

(ii) If there exists cM \in (0,1) such that \lambda 1( \=M\ast ) = \omega (max\{ (\Delta rs \vee \Delta sr)
cM , (\Delta r

logn)1/2,
\sqrt{} 
(\Delta r logn)1/2(\Delta rs \vee \Delta sr)\} ) and \lambda 2(\=L\ast ) = \omega ((\Delta rs\vee \Delta sr)

2 - cM ), then
there exists \gamma n \in \BbbR such that \| x\scrG ,n  - \gamma n1nr

\| = o(\| z(s)\| ) w.h.p.
Remark 4.10. Theorem 4.9(i) shows that polarization of the expected final opin-

ions can occur when the influence of stubborn agents is large, as also shown in [16].
Similar results hold for the case where \delta rs = 0, which are omitted due to space limits.
Theorem 4.9(ii) implies that consensus of expected final opinions can appear if the
influence of stubborn agents is small, as investigated in [1]. When the influence of
stubborn agents is neither large nor small, the expected final opinions exhibit much

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/2

2/
24

 to
 8

3.
24

9.
19

3.
57

 b
y 

Y
u 

X
in

g 
(y

ux
in

g2
@

kt
h.

se
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



CONCENTRATION IN GOSSIP OPINION DYNAMICS 1533

diversity [26, 28] and it is hard to provide universal characterization. But Theorem
4.3 and Proposition 4.5 enable approximation of x\scrG ,n using x\ast ,n, for example, estab-
lishing correspondence between expected final opinions and communities for SBMs
(see section 5). It is possible to obtain concentration of opinion variances as in [1],
by solving the stationary covariance matrix and analyzing its concentration [57]. The
assumptions in (ii) essentially ensure the connectivity of the random graph w.h.p.:
Lemma A.2 and (A.4) in Appendix A yield that \lambda 2(\=L

\scrG ) \geq \lambda 2(\=L
\ast )  - 4

\surd 
\Delta rr logn

w.h.p. Note that (\Delta rs \vee \Delta sr)
2 - cM \geq \Delta rs \geq \lambda 1( \=M\ast ) = \omega (

\surd 
\Delta r logn), so \lambda 2(\=L

\scrG ) \geq 
\omega (

\surd 
\Delta r logn) - 4

\surd 
\Delta rr logn= \omega (

\surd 
\Delta rr logn), indicating \lambda 2(\=L

\scrG )> 0 for large n.

4.2. Concentration of time-averaged opinions. In this subsection we study
the concentration of time-averaged opinions S\scrG (t) = (

\sum t - 1
i=0X

\scrG (i))/t around the ex-
pected final opinions x\ast ,n. The previous subsection studies the bound for \| x\scrG ,n  - 
x\ast ,n\| . Proposition 2.3 indicates that the time average S\scrG (t) should be close to x\scrG ,n

when t is large enough. By bounding \| S\scrG (t) - x\scrG ,n\| , we obtain the following result.
The theorem provides upper bounds for the distance between S\scrG (t) and x\ast ,n, which
hold with probability increasing to one as the network size n and the time t increase.

Theorem 4.11 (concentration of time-averaged opinions).
(i) Under Assumption 4.1(i.1) and (ii), for \varepsilon S,n > 0, t > 2\=s\ast /\varepsilon S,n, it holds that

\BbbP \{ \| S\scrG (t) - x\ast ,n\| \leq 
\surd 
nr\varepsilon S,n + \varepsilon x,n\| z(s)\| \} \geq 1 - \eta S,n,t  - \eta S,n,(4.4)

where \varepsilon x,n is given in Theorem 4.3(i), and

\eta S,n,t = 2nr exp

\biggl\{ 
 - (t\varepsilon S,n  - 2\=s\ast )2

2t(\=s\ast )2

\biggr\} 
, \=s\ast =

12
\surd 
nrcx\alpha 

\ast 

\delta rs
,

\eta S,n = r0n
1 - \delta rs

8 \mathrm{l}\mathrm{o}\mathrm{g}n + 2(1 + r0)n
 - 1

5 + 2n - 
2
3 , r0 = nr/n.

(ii) Under Assumption 4.1(i.2) and (ii), (4.4) holds for \varepsilon S,n > 0, t > 2\=s\ast /\varepsilon S,n with
\varepsilon x,n given in Theorem 4.3(ii) and

\eta S,n,t = 2nr exp

\biggl\{ 
 - (t\varepsilon S,n  - 2\=s\ast )2

2t(\=s\ast )2

\biggr\} 
, \=s\ast =

6
\surd 
nrcx\alpha 

\ast 

\lambda 1( \=M\ast ) - 4
\surd 
\Delta r logn

,

\eta S,n = 2(1 + r0)n
 - 1

5 + 2n - 
1
8 , r0 = nr/n.

Proof. See Appendix E.

Remark 4.12. The theorem provides high-probability bounds for the distance
between time-averaged opinions and expected final opinions over the expected graph.
The concentration depends on both network size and time. The error \varepsilon S,n controls
the concentration of S\scrG (t) around x\scrG ,n. Set \varepsilon S,n = o(1) as n\rightarrow \infty , and then entrywise
concentration follows from

\surd 
nr\varepsilon S,n + \varepsilon x,n\| z(s)\| = o(

\surd 
n), under Assumption 4.1(iii).

Note that \varepsilon x,n and \eta S,n depend on the network size n and do not vanish for fixed n,
even if t\rightarrow \infty . This captures the effect of the network size on concentration. When
n is large, the concentration probability depends mostly on \eta S,n,t and time t.

We conclude this section by connecting the main results to community detection
for dynamical processes [49, 58]. In [58] we demonstrate how to recover commu-
nity structure based on time-averaged opinions for a gossip model over deterministic
weighted graphs. Theorems 4.9 and 4.11 guarantee that such a method can still work
for the gossip model over SBMs, and the communities can be recovered w.h.p. When
the influence of stubborn agents is small, it is possible to derive guarantees for com-
munity detection based on transient opinions, following the concentration analysis
developed in this paper and [60].
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1534 YU XING AND KARL H. JOHANSSON

5. Simulation. In this section, we present a simulation to illustrate theoretical
findings. First, we compare concentration bounds for expected final opinions provided
by Theorem 4.3 with numerical experiments. Then, we apply main results to a gossip
model over an SBM and validate the conclusions through simulation.

We examine how close the error \varepsilon x,n, given in Theorem 4.3(i), is to the actual
value \varepsilon \ast n := \| (I  - \=Q\scrG ) - 1 \=R\scrG  - (I  - \=Q\ast ) - 1 \=R\ast \| , where [ \=Q\scrG \=R\scrG ] and [ \=Q\ast \=R\ast ] are the
expected interaction matrices over a random graph \scrG and over its expected graph,
respectively (see section 2.4). We consider a gossip model over RG-S(nr, ns,\Psi 

(r),\Psi (s)),

with network size n = nr + ns, ns = 0.1n, \psi 
(r)
ii = 0, and \psi 

(r)
ij = \psi 

(s)
k,l - n\mathrm{r}

\equiv (logn)2/n
for all i, j, k \in \scrV r and l \in \scrV s with i \not = j. That is, the random graph model is similar
to an Erd\H os--R\'enyi model, except that no edges exist between stubborn agents. We
run the gossip model with n ranging from 102 to 104 and calculate \varepsilon \ast n. The value
has order O(1/(logn)) as shown in Figure 3, whereas Theorem 4.3(i) indicates a
bound \varepsilon x,n = O(1/(logn)1/2) (see Example 5.1 of [61] for the detailed calculation).
As discussed in Remark 4.4, it is possible to remove the logarithmic terms in \varepsilon x,n,
resulting in a tighter bound of the same order as observed in the simulation.

Now we demonstrate the main results by studying the behavior of a gossip model
over an SBM. We assume that there are three communities with regular agents \scrV rk =
\{ 1 + (k  - 1)nr1, . . . , knr1\} , 1 \leq k \leq 3, and two communities with stubborn agents
\scrV sm = \{ 3nr1+(m - 1)ns1+1, . . . ,3nr1+mns1\} , m= 1,2. Thus, | \scrV rk| = nr1, 1\leq k\leq 3,
| \scrV sm| = ns1,m= 1,2, and n= 3nr1+2ns1. The network model is RG-S(3nr1,2ns1,\Psi 

(r),

\Psi (s)), where \psi 
(r)
ii = 0 for all i\in \scrV r, \psi 

(r)
ij = (logn)\beta 1/n=: p1 for i \not = j \in \scrV rk and 1\leq k\leq 3,

\psi 
(r)
ij = (logn)\beta 2/n=: p2 for i\in \scrV rk and j \in \scrV rl with 1\leq l \not = k\leq 3, and

\Psi (s) =

\left[ 
 

p31n\mathrm{r}1,n\mathrm{s}1
0n\mathrm{r}1,n\mathrm{s}1

c
(s)
21 p31n\mathrm{r}1,n\mathrm{s}1

c
(s)
22 p31n\mathrm{r}1,n\mathrm{s}1

0n\mathrm{r}1,n\mathrm{s}1 p31n\mathrm{r}1,n\mathrm{s}1

\right] 
 

with p3 = (logn)\gamma /n, c
(s)
21 , c

(s)
22 \in \{ 0,1\} , and 1m,n = 1m1T

n . That is, the link probability
within the same community with regular agents is p1, and the link probability for
edges between regular agents in different communities is p2. In addition, regular
agents in \scrV r1 (resp., \scrV r3) have probability p3 linking to stubborn agents in \scrV s1 (resp.,
\scrV s2). Agents in \scrV r2 have positive probability linking to stubborn agents in \scrV s1 (resp.,

\scrV s2) if and only if c
(s)
21 = 1 (resp., c

(s)
22 = 1). Figure 4 illustrates such an SBM with

five communities. In the experiment, we set | \scrV rk| = nr1 = 600, and | \scrV sm| = ns1 = 100,
1 \leq k \leq 3, m = 1,2, so n = 2000. To fix link probabilities p1 and p2, let \beta 1 = 2

6 7 8 9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Fig. 3. Comparison of the theoretical
bound provided by Theorem 4.3(i) with simu-
lation. A log-log plot is given in the figure.

Fig. 4. A sample of an SBM. In the graph,
dots and squares represent regular and stubborn
agents, respectively.
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CONCENTRATION IN GOSSIP OPINION DYNAMICS 1535

and \beta 2 = 1.1. For the link probability p3, we consider three cases \gamma = 3.5,2, and 1,
corresponding to large, moderate, and small influence of stubborn agents, respectively.

We first study the case where c
(s)
21 = c

(s)
22 = 0 (that is, the community \scrV r2 does not

have any edge connected to \scrV sm, m = 1,2). For each \gamma , a network is generated and
then fixed. The opinions of stubborn agents in \scrV s1 are generated independently and
uniformly from (0.9,1) and those in \scrV s2 from (0,0.1). The expected final opinions
over the SBM and those over the expected graph are calculated according to (2.5)
and (2.6). Under the circumstances of interest, it can be proved that there exist
\chi k \in \BbbR , 1 \leq k \leq 3, such that x\ast ,n

i = \chi k for all i \in \scrV rk [58]. That is, regular agents
in the same community have the same expected final opinion. Thus, Theorem 4.3
ensures that expected final opinions x\scrG ,n in the same community are close, which
can be observed in Figure 5. In addition, large influence of stubborn agents fosters
polarization, whereas small influence of stubborn agents results in expected opinions
close to each other. These results are in line with theoretical findings given in Theorem
4.9. In the moderate influence case, the expected opinions concentrate around their
expected counterparts. Now we examine how edges between \scrV r2 and stubborn agents
influence x\scrG ,n. Consider three cases: (i) c

(s)
21 = c

(s)
22 = 1, (ii) c

(s)
21 = 1 and c

(s)
22 = 0,

and (iii) c
(s)
21 = c

(s)
22 = 0. In case (i), agents in \scrV r2 are connected to \scrV sm with positive

probability, m = 1,2. In case (ii), they are only connected to \scrV s1. In case (iii), they
are not connected to any stubborn agents. We set \gamma = 3.5 and generate x\scrG ,n in the
same way as earlier. Figure 6 shows that the agents in \scrV r2 end in a neutral place in
case (i). However, in case (ii), agents in \scrV r2 have opinions close to \scrV s1, as \scrV r2 has
edges to \scrV s1, but not \scrV s2. In case (iii), the expected final opinions of \scrV r2 are similar
to case (i), resulting from that agents in \scrV r2 have the same number of edges linking
to both regular communities. To illustrate the concentration of the time-averaged
opinions S\scrG (t), we run the gossip model with c

(s)
21 = c

(s)
22 = 0. The initial opinions

(a) Large influence (γ = 3.5). (b) Moderate influence (γ = 2). (c) Small influence (γ = 1).

Fig. 5. The profile of the expected final opinions x\scrG ,n under different stubborn influence. The
dashed lines represent the three distinct values of x\ast ,n corresponding to the communities.

(a) c
(s)
21 = c

(s)
22 = 1. (b) c

(s)
21 = 1 and c

(s)
22 = 0. (c) c

(s)
21 = c

(s)
22 = 0.

Fig. 6. The profile of the expected final opinions x\scrG ,n under different values of c
(\mathrm{s})
21 and c

(\mathrm{s})
22 .
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1536 YU XING AND KARL H. JOHANSSON

(a) Large influence (γ = 3.5). (b) Moderate influence (γ = 2). (c) Small influence (γ = 1).

Fig. 7. The profile of the time-averaged opinions S\scrG (t) with t= 5\times 104 under different stubborn
influence. The dashed lines represent the three values of x\ast ,n corresponding to the communities.

Xi(0) are generated uniformly from (0,1). Figure 7 presents the histogram of S\scrG (t)
under three different values of \gamma with t= 5\times 104. We can see that the profile of S\scrG (t)
is similar to x\scrG ,n shown in Figure 5, verifying Theorem 4.11.

6. Conclusion. In this paper, we studied concentration of expected final opin-
ions in the gossip model over random graphs, and we showed how such concentration
can help study the effect of network structure on expected final opinions. We also
obtained concentration bounds for time-averaged opinions. Future work includes in-
vestigating sharp concentration bounds for the gossip and other models, and applying
the results to community detection problems.

Appendix A. Auxiliary concentration results. In this section, we present
auxiliary concentration lemmas from which the main results given in the paper are
obtained. These lemmas are consequences of the following standard conclusions in
high-dimensional probability theory and matrix analysis.

Lemma A.1 (the Chernoff inequality, Theorems 4.4 and 4.5 of [40]). Suppose that
X1, . . ., Xn are independent Bernoulli random variables such that \BbbP \{ Xi = 1\} = pi =
1 - \BbbP \{ Xi = 0\} . Let X :=

\sum n
i=1Xi and \mu :=\BbbE \{ X\} =

\sum n
i=1 pi. Then for 0< \delta < 1,

\BbbP \{ X \geq (1 + \delta )\mu \} \leq e - \mu \delta 2/3, \BbbP \{ X \leq (1 - \delta )\mu \} \leq e - \mu \delta 2/2.(A.1)

Lemma A.2 (the matrix Bernstein inequality, Theorem 5.4.1 and Exercise 5.4.15
of [55]). Suppose that Y1, . . . , YN \in \BbbR n\times n are independent zero-mean random matrices
and are such that \| Yi\| \leq K a.s., 1\leq i\leq N . Then for a\geq 0, it holds that

\BbbP 

\Biggl\{ \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

i=1

Yi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \geq a

\Biggr\} 
\leq 2n exp

\Bigl\{  - a2/2
\sigma 2 +Ka/3

\Bigr\} 
,(A.2)

where \sigma 2 = \| 
\sum N

i=1\BbbE \{ Y 2
i \} \| . If Y1, . . . , YN \in \BbbR m\times n are independent, mean zero, and

such that \| Yi\| \leq K a.s., then for all a\geq 0, it holds that

\BbbP 

\Biggl\{ \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

i=1

Yi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \geq a

\Biggr\} 
\leq 2(m+ n) exp

\Bigl\{  - a2/2
\sigma 2 +Ka/3

\Bigr\} 
,(A.3)

where \sigma 2 =max\{ \| 
\sum N

i=1\BbbE \{ Y T
i Yi\} \| ,\| 

\sum N
i=1\BbbE \{ YiY T

i \} \| \} .
Lemma A.3. For A,B \in \BbbR n\times n, if A and B are symmetric, then the Weyl inequal-

ity holds (Theorem 4.3.1 and (6.3.4.1) of [35]):

max
1\leq i\leq n

| \lambda i(A) - \lambda i(B)| \leq \| A - B\| .(A.4)
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CONCENTRATION IN GOSSIP OPINION DYNAMICS 1537

If A and B are invertible, then ((5.8.1) of [35])

\| A - 1  - B - 1\| \leq \| A - 1\| \| B - 1\| \| A - B\| .(A.5)

First, we derive a concentration bound for the matrix \=M\scrG given in (2.7).

Lemma A.4 (concentration of \=M\scrG ). If \Delta r \geq logn, then \BbbP \{ \| \=M\scrG  - \=M\ast \| \leq \varepsilon M,n\} \geq 
1 - \eta M,n, where \varepsilon M,n = 4

\surd 
\Delta r logn, \eta M,n = 2r0n

 - 1
5 , and r0 = nr/n.

Proof. Decompose \=M\scrG  - \=M\ast =
\sum n\mathrm{r}

i=1

\sum n
j=i+1 Yij , where Yij = (aij  - pij) (Eii +

Ejj  - Eij  - Eji), 1 \leq i < j \leq nr, and Yij = (aij  - pij)Eii, 1 \leq i \leq nr < j \leq 
n. Here pij := \BbbE \{ aij\} and Eij = e

(n\mathrm{r})
i (e

(n\mathrm{r})
j )T, 1 \leq i, j \leq n. Hence \BbbE \{ Yij\} = 0,

\BbbE \{ Y 2
ij\} = 2(pij  - p2ij)(Eii + Ejj  - Eij  - Eji) for 1 \leq i < j \leq nr, and \BbbE \{ Y 2

ij\} =
(pij  - p2ij)Eii for 1\leq i\leq nr < j \leq n. Denote \=Y :=

\sum n\mathrm{r}

i=1

\sum n
j=i+1\BbbE \{ Y 2

ij\} , so \sigma 2 = \| \=Y \| \leq 
4max1\leq i\leq n\mathrm{r}\{ 

\sum n
j=1 pij\} = 4\Delta r. From (A.2) and \| Yij\| \leq 2 =K, for a> 0,

\BbbP \{ \| \=M\scrG  - \=M\ast \| >a\} \leq 2nr exp
\Bigl\{  - a2

4(2\Delta r + a/3)

\Bigr\} 
.

Set a= 4
\surd 
\Delta r logn, and from the assumption \Delta r \geq logn we have that

\BbbP \{ \| \=M\scrG  - \=M\ast \| > 4
\sqrt{} 
\Delta r logn\} \leq 2r0n exp

\Bigl\{  - 4\Delta r logn

2\Delta r + 4
\surd 
\Delta r logn/3

\Bigr\} 

\leq 2r0n exp
\Bigl\{  - 4 logn

2 + 4/3

\Bigr\} 
= 2r0n

 - 1
5 .

As a consequence, we can estimate the deviation of ( \=M\scrG ) - 1 from ( \=M\ast ) - 1.

Corollary A.5 (concentration of ( \=M\scrG ) - 1).
(i) If \delta rs > 8 logn, then it holds that

\BbbP \{ \| ( \=M\scrG ) - 1  - ( \=M\ast ) - 1\| \leq \varepsilon \prime M,n\} \geq 1 - \eta \prime M,n,(A.6)

where \varepsilon \prime M,n = 2\varepsilon M,n/\delta 
2
rs, \eta 

\prime 
M,n = r0n

1 - \delta rs/(8 logn) + \eta M,n, \varepsilon M,n and \eta M,n are
given in Lemma A.4, and r0 = nr/n.

(ii) If \lambda 1( \=M\ast ) > \varepsilon M,n and \Delta r \geq logn, then (A.6) holds with \varepsilon \prime M,n = \varepsilon M,n/
[\lambda 1( \=M\ast )(\lambda 1( \=M\ast ) - \varepsilon M,n)] and \eta 

\prime 
M,n = \eta M,n.

Proof. Note that [ \=M\ast ]ii = \BbbE \{ di\} , and [ \=M\ast ]ij =  - \BbbE \{ aij\} . So by the Gershgorin

circle theorem, \lambda min( \=M\ast )\geq min1\leq i\leq n\mathrm{r}
\{ \BbbE \{ di\}  - \BbbE \{ d(r)i \} \} =min1\leq i\leq n\mathrm{r}

\{ \BbbE \{ d(s)i \} \} = \delta rs.
Thus, for symmetric \=M\ast , ( \=M\ast ) - 1 exists when \delta rs > 0. Hence,

\| ( \=M\ast ) - 1\| = 1

\lambda min( \=M\ast )
\leq 1

\delta rs
.(A.7)

Similarly, from the Gershgorin circle theorem, it follows that \lambda min( \=M\scrG )\geq min1\leq i\leq n\mathrm{r}

\{ di  - d
(r)
i \} =min1\leq i\leq n\mathrm{r}

\{ d(s)i \} . Using (A.1) with \delta = 1/2, we obtain that

\BbbP 
\biggl\{ 

min
1\leq i\leq n\mathrm{r}

\{ d(s)i \} > 1

2
\delta rs

\biggr\} 
= 1 - \BbbP 

\Biggl\{ 
n\mathrm{r}\bigcup 

i=1

\biggl[ 
d
(s)
i \leq 1

2
\BbbE \{ d(s)i \} 

\biggr] \Biggr\} 

\geq 1 - r0ne
 - \delta \mathrm{r}\mathrm{s}/8 = 1 - r0n

1 - \delta \mathrm{r}\mathrm{s}/(8 logn).

As a result, with probability at least 1 - r0n
1 - \delta \mathrm{r}\mathrm{s}/(8 logn),

\| ( \=M\scrG ) - 1\| = 1

\lambda min( \=M\scrG )
\leq 2

\delta rs
.(A.8)
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1538 YU XING AND KARL H. JOHANSSON

Therefore, from (A.5), with probability at least 1 - r0n
1 - \delta \mathrm{r}\mathrm{s}/(8 logn)  - \eta M,n,

\| ( \=M\scrG ) - 1  - ( \=M\ast ) - 1\| \leq \| ( \=M\scrG ) - 1\| \| ( \=M\ast ) - 1\| \| \=M\scrG  - \=M\ast \| \leq 2\varepsilon M,n

\delta 2rs
.

To show (ii), note from (A.4) that with probability at least 1 - \eta M,n

| \lambda min( \=M\scrG ) - \lambda min( \=M\ast )| \leq \varepsilon M,n,(A.9)

so \lambda min( \=M\scrG )\geq \lambda min( \=M\ast ) - \varepsilon M,n > 0 when \lambda min( \=M\ast )> \varepsilon M,n. Again from (A.5),

\| ( \=M\scrG ) - 1  - ( \=M\ast ) - 1\| \leq \| ( \=M\scrG ) - 1\| \| ( \=M\ast ) - 1\| \| \=M\scrG  - \=M\ast \| 

=
1

\lambda min( \=M\scrG )

1

\lambda min( \=M\ast )
\| \=M\scrG  - \=M\ast \| 

\leq \varepsilon M,n

\lambda min( \=M\ast )(\lambda min( \=M\ast ) - \varepsilon M,n)
,

with probability at least 1 - \eta M,n.

Similar to \=M\scrG , we can obtain concentration of \=U\scrG given in (2.7).

Lemma A.6 (concentration of \=U\scrG ). Suppose that \Delta rs\vee \Delta sr \geq logn. Then \BbbP \{ \| \=U\scrG 

 - \=U\ast \| \leq \varepsilon U,n\} \geq 1 - \eta U,n, where \varepsilon U,n = 2
\sqrt{} 
(\Delta rs \vee \Delta sr) logn and \eta U,n = 2n - 1/5.

Proof. Decompose \=U\scrG  - \=U\ast =
\sum n\mathrm{r}

i=1

\sum n
j=n\mathrm{r}+1 Y

\prime 
ij , where Y \prime 

ij = (aij  - pij)e
(r)
i

(e
(s)
j )T. Here pij = \BbbE \{ aij\} , e(r)i := e

(n\mathrm{r})
i , and e

(s)
j := e

(n\mathrm{s})
j - n\mathrm{r}

. Hence, \| Y \prime 
ij\| = | aij  - 

pij | \| e(r)i (e
(s)
j )T\| \leq \| e(r)i (e

(s)
j )T\| = 1, and

\=Y \prime :=
n\mathrm{r}\sum 

i=1

n\sum 

j=n\mathrm{r}+1

\BbbE \{ (Y \prime 
ij)

TY \prime 
ij\} 

=

n\mathrm{r}\sum 

i=1

n\sum 

j=n\mathrm{r}+1

\BbbE \{ (aij  - pij)
2\} e(s)j (e

(r)
i )Te

(r)
i (e

(s)
j )T

=diag

\Biggl( 
n\mathrm{r}\sum 

i=1

(pi,n\mathrm{r}+1  - p2i,n\mathrm{r}+1), . . . ,

n\mathrm{r}\sum 

i=1

(pi,n  - p2i,n)

\Biggr) 
,

\| \=Y \prime \| \leq max
n\mathrm{r}+1\leq j\leq n

\Biggl\{ 
n\mathrm{r}\sum 

i=1

(pij  - p2ij)

\Biggr\} 
\leq max

n\mathrm{r}+1\leq j\leq n

\Biggl\{ 
n\mathrm{r}\sum 

i=1

pij

\Biggr\} 
=\Delta sr.

Similarly, let \=Y \prime \prime :=
\sum n\mathrm{r}

i=1

\sum n
j=n\mathrm{r}+1\BbbE \{ Y \prime 

ij(Y
\prime 
ij)

T\} , and then we have that

\| \=Y \prime \prime \| \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
diag

\left( 
 

n\sum 

j=n\mathrm{r}+1

(p1j  - p21j), . . . ,

n\sum 

j=n\mathrm{r}+1

(pn\mathrm{r},j  - p2n\mathrm{r},j)

\right) 
 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\leq max
1\leq i\leq n\mathrm{r}

\left\{ 
 
 

n\sum 

j=n\mathrm{r}+1

(pij  - p2ij)

\right\} 
 
 \leq \Delta rs.
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Let \sigma 2 =\Delta rs \vee \Delta sr and K = 1, and set a= 2
\sqrt{} 
(\Delta rs \vee \Delta sr) logn. From (A.3),

\BbbP \{ \| \=U\scrG  - \=U\ast \| > 2
\sqrt{} 
(\Delta rs \vee \Delta sr) logn\} 

\leq 2(ns + nr) exp

\Biggl\{ 
 - 2(\Delta rs \vee \Delta sr) logn

(\Delta rs \vee \Delta sr) + 2
\sqrt{} 
(\Delta rs \vee \Delta sr) logn/3

\Biggr\} 

= 2n exp

\Biggl\{ 
 - 2 logn

1 + 2
\sqrt{} 
(logn)/(\Delta rs \vee \Delta sr)/3

\Biggr\} 
\leq 2n - 

1
5 .

The preceding concentration bounds are useful in analyzing the distance \| x\scrG ,n - 
x\ast ,n\| = \| (I  - \=Q\scrG ) - 1 \=R\scrG z(s)  - (I  - \=Q\ast ) - 1 \=R\ast z(s)\| = \| [( \=M\scrG ) - 1 \=U\scrG  - ( \=M\ast ) - 1\Psi (s)]z(s)\| .
But to make sure that (I  - \=Q\scrG ) - 1 is well-defined, we now study \=Q\scrG and \alpha \scrG .

Lemma A.7 (bound of \alpha \scrG and \rho ( \=Q\scrG )).
(i) Suppose that \delta rs > 8 logn. Then it holds that

\BbbP \{ [\rho ( \=Q\scrG )\leq \varepsilon Q,n < 1]\cap [\alpha \scrG \geq \alpha \ast /2> 0]\} \geq 1 - \eta Q,n,(A.10)

where \varepsilon Q,n = 1 - \delta rs/(6\alpha 
\ast ), \eta Q,n = r0n

1 - \delta rs/(8 logn) + 2n - 2/3, and r0 = nr/n.
(ii) Suppose that \lambda 1( \=M\ast )> \varepsilon M,n and \Delta r \geq logn. Then (A.10) holds with \varepsilon Q,n =

1 - (\lambda 1( \=M\ast ) - \varepsilon M,n)/(3\alpha 
\ast ) and \eta Q,n = \eta M,n + 2n - 1/8, where \varepsilon M,n and \eta M,n

are given in Lemma A.4.

Proof. Applying (A.1) with \delta = 1/2 yields that

\BbbP \{ \alpha \scrG  - \alpha \ast \leq  - \alpha \ast /2\} \leq e - 
\alpha \ast 
8 .(A.11)

When \alpha \ast \geq \delta rs > 8 logn > 0, e - \alpha \ast /8 \leq e - logn = n - 1. If \alpha \ast \geq \Delta r \geq logn > 0,
e - \alpha \ast /8 \leq n - 1/8. Hence, \alpha \scrG \geq \alpha \ast /2> 0 w.h.p.

Note that I  - \=Q\ast = \=M\ast /(2\alpha \ast ), so (I  - \=Q\ast ) - 1 exists under conditions of either (i)
or (ii). Since \=Q\scrG = I  - \=M\scrG /(2\alpha \scrG ) is symmetric and positive semidefinite, to show
\rho ( \=Q\scrG ) = \lambda max( \=Q

\scrG )< 1, it suffices to provide a lower bound for \lambda 1( \=M\scrG /(2\alpha \scrG )).
First we derive a bound under \delta rs > 8 logn. From (A.8), we know that \BbbP \{ \lambda 1( \=M\scrG )

> \delta rs/2\} \geq 1 - r0n
1 - \delta \mathrm{r}\mathrm{s}/(8 logn). In addition, applying (A.1) with \delta = 1/2 yields that

\BbbP \{ 1/(2\alpha \scrG )\leq 1/(3\alpha \ast )\} \leq \BbbP \{ \alpha \scrG  - \alpha \ast \geq \alpha \ast /2\} \leq e - 
\alpha \ast 
12 \leq n - 

2
3 ,(A.12)

so \rho ( \=Q\scrG )\leq 1 - \delta rs/(6\alpha 
\ast ) holds with probability at least 1 - r0n

1 - \delta \mathrm{r}\mathrm{s}/(8 logn)  - n - 2/3.
Thus (i) is proved. Combining (A.9), (A.11), and (A.12) yields (ii).

Appendix B. Proof of Theorem 4.3. From Lemma A.7, (I  - \=Q\scrG ) - 1 exists
w.h.p. and (I  - \=Q\ast ) - 1 exists under either (i.1) or (i.2) of Assumption 4.1. In either
case, x\scrG ,n and x\ast ,n are well-defined, and it holds that

\| x\scrG ,n  - x\ast ,n\| = \| (I  - \=Q\scrG ) - 1 \=R\scrG z(s)  - (I  - \=Q\ast ) - 1 \=R\ast z(s)\| 

=
\bigm\| \bigm\| \bigm\| 
\Bigl[ \Bigl( \=M\scrG 

2\alpha \scrG 

\Bigr)  - 1 \=U\scrG 

2\alpha \scrG  - 
\Bigl( \=M\ast 

2\alpha \ast 

\Bigr)  - 1\Psi (s)

2\alpha \ast 

\Bigr] 
z(s)
\bigm\| \bigm\| \bigm\| 

= \| [( \=M\scrG ) - 1 \=U\scrG  - ( \=M\ast ) - 1\Psi (s)]z(s)\| 
= \| \{ ( \=M\scrG ) - 1( \=U\scrG  - \Psi (s)) + [( \=M\scrG ) - 1  - ( \=M\ast ) - 1]\Psi (s)\} z(s)\| 
\leq (\| ( \=M\scrG ) - 1\| \| \=U\scrG  - \Psi (s)\| + \| ( \=M\scrG ) - 1  - ( \=M\ast ) - 1\| \| \Psi (s)\| )\| z(s)\| .
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1540 YU XING AND KARL H. JOHANSSON

From (A.8), Lemma A.6, Corollary A.5(i), and Lemma A.7(i), it holds with probability
at least 1 - r0n

1 - \delta \mathrm{r}\mathrm{s}/(8 logn)  - 2(1 + r0)n
 - 1/5  - 2n - 2/3 that

\| x\scrG ,n  - x\ast ,n\| \leq 
\Bigl( 2

\delta rs
\varepsilon U,n + \varepsilon \prime M,n\| \Psi (s)\| 

\Bigr) 
\| z(s)\| (B.1)

\leq 4
\Bigl( \sqrt{} (\Delta rs \vee \Delta rs) logn

\delta rs
+

2
\surd 
\Delta r logn\| \Psi (s)\| 

\delta 2rs

\Bigr) 
\| z(s)\| .

In this way, we prove (i) of the theorem. The second part follows from (A.9),
Lemma A.6, Corollary A.5(ii), and Lemma A.7(ii).

Appendix C. Proof of Proposition 4.5. From the definition of \scrV \varepsilon ,n, \varepsilon 2| \scrV \varepsilon ,n| 
\leq 
\sum 

i(x
\scrG ,n
i  - x\ast ,n

i )2 = \| x\scrG ,n  - x\ast ,n\| 2. Since \delta rs = \omega (logn), | \scrV \varepsilon ,n| \leq \varepsilon 2x,n\| z(s)\| 2/\varepsilon 2 \leq 
\varepsilon 2x,nc

2
xn/\varepsilon 

2 w.h.p. Note that
\sqrt{} 
(\Delta r logn)1/2(\Delta rs \vee \Delta sr) \geq 

\sqrt{} 
(\delta rs logn)1/2(\Delta rs \vee \Delta sr)

= \omega (
\sqrt{} 
(\Delta rs \vee \Delta sr) logn), and

\sqrt{} 
(\Delta r logn)1/2(\Delta rs \vee \Delta sr)\geq 

\sqrt{} 
(\Delta r logn)1/2\| \Psi (s)\| .

The conclusion then follows from the expression of \varepsilon x,n in Theorem 4.3(i), As-

sumption 4.1(iii), and \delta rs = \omega (
\sqrt{} 

(\Delta r logn)1/2(\Delta rs \vee \Delta sr)).

Appendix D. Proof of Theorem 4.7.
Proof of Theorem 4.7(i). Denote \=S := diag(d

(s)
1 , . . . , d

(s)
n\mathrm{r} ) = \=M\scrG  - \=L\scrG . Note

that (\BbbE \{ \=S\} ) - 1 exists when \delta rs > 0, so

\| x\ast ,n  - (\BbbE \{ \=S\} ) - 1\Psi (s)z(s)\| \leq \| ( \=M\ast ) - 1  - (\BbbE \{ \=S\} ) - 1\| \| \Psi (s)\| \| z(s)\| 
\leq \| ( \=M\ast ) - 1\| \| (\BbbE \{ \=S\} ) - 1\| \| \=M\ast  - \BbbE \{ \=S\} \| \| \Psi (s)\| \| z(s)\| (From (A.5))

\leq 1

\delta rs

1

\delta rs
\| \=L\ast \| \| \Psi (s)\| \| z(s)\| \leq 2\Delta rr

\delta 2rs
\| \Psi (s)\| \| z(s)\| .(From (A.7))

If \Delta rr = 0, the conclusion holds trivially. Now suppose \Delta rr =\Omega (1). Then \Delta rs \vee \Delta sr \geq 
\delta rs = \omega (1). The conclusion follows from \delta rs = \omega (

\sqrt{} 
\Delta rr(\Delta rs \vee \Delta sr)).

Proof of Theorem 4.7(ii). If \Delta rs = 0, x\ast ,n is a consensus vector and the result
holds. Now assume \Delta rs = \Omega (1). The assumption \lambda 2(\=L

\ast ) = \omega ((\Delta rs \vee \Delta sr)
2 - cM ) >

2\Delta rs > 0 ensures that the eigenvalue \lambda 1( \=M\ast ) is simple. By \xi denote the unit eigen-
vector corresponding to \lambda 1( \=M\ast ). Since \=M\ast is symmetric, it has orthogonal unit
eigenvectors w(2), . . ., w(n\mathrm{r}) corresponding to its eigenvalues \lambda 2( \=M\ast )\leq \cdot \cdot \cdot \leq \lambda n\mathrm{r}(

\=M\ast ).
Also \xi , w(2), . . ., w(n\mathrm{r}) form a basis of \BbbR n\mathrm{r} , and \xi \xi T +

\sum n\mathrm{r}

j=2w
(j)(w(j))T = In\mathrm{r}

. So
\bigm\| \bigm\| \bigm\| ( \=M\ast ) - 1\Psi (s)z(s)  - 1

nr\lambda 1( \=M\ast )
1n\mathrm{r}

1T
n\mathrm{r}
\Psi (s)z(s)

\bigm\| \bigm\| \bigm\| 

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
( \=M\ast ) - 1

\left( 
 \xi \xi T +

n\mathrm{r}\sum 

j=2

w(j)(w(j))T

\right) 
 \Psi (s)z(s)  - 1

nr\lambda 1( \=M\ast )
1n\mathrm{r}

1T
n\mathrm{r}
\Psi (s)z(s)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| ( \=M\ast ) - 1\xi \xi T\Psi (s)z(s)  - 1

nr\lambda 1( \=M\ast )
1n\mathrm{r}

1T
n\mathrm{r}
\Psi (s)z(s)

\bigm\| \bigm\| \bigm\| \bigm\| 

+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
( \=M\ast ) - 1

\left( 
 

n\mathrm{r}\sum 

j=2

w(j)(w(j))T

\right) 
 \Psi (s)z(s)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
=: (I) + (II).

Note that ( \=M\ast ) - 1\xi = \xi /\lambda 1( \=M\ast ), so

(I) =
\bigm\| \bigm\| \bigm\| 1

\lambda 1( \=M\ast )
\xi \xi T\Psi (s)z(s)  - 1

nr\lambda 1( \=M\ast )
1n\mathrm{r}

1T
n\mathrm{r}
\Psi (s)z(s)

\bigm\| \bigm\| \bigm\| 

\leq 1

\lambda 1( \=M\ast )

\bigm\| \bigm\| \bigm\| \xi \xi T  - 1

nr
1n\mathrm{r}

1T
n\mathrm{r}

\bigm\| \bigm\| \bigm\| \| \Psi (s)z(s)\| \leq 2\| \Psi (s)\| \| z(s)\| \Delta rs

\lambda 1( \=M\ast )(\lambda 2(\=L\ast ) - 2\Delta rs)
,
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CONCENTRATION IN GOSSIP OPINION DYNAMICS 1541

where the last inequality is obtained from the following lemma with A= \=M\ast , B = \=L\ast ,
and \zeta = (\lambda 2(\=L

\ast ) - 2\Delta rs)/2, which is a consequence of Theorem 5.5 in Chapter I and
Theorem 3.6 in Chapter V of [52].

Lemma D.1. Let A,B \in \BbbR n\times n be symmetric, and \mu with corresponding unit eigen-
vector u (resp., \nu with unit eigenvector v) be a simple eigenvalue of A (resp., B).
Denote r =Av  - \nu v. If there exists \zeta > 0 such that the eigenvalues of A except \mu lie
outside the interval [\nu  - \zeta , \nu + \zeta ], then \| uuT  - vvT\| \leq \| r\| /\zeta \leq \| A - B\| /\zeta .

For (II), it holds that

(II) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

n\mathrm{r}\sum 

j=2

1

\lambda j( \=M\ast )
w(j)(w(j))T\Psi (s)z(s)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

=

\sqrt{}    
n\mathrm{r}\sum 

j=2

[(w(j))T\Psi (s)z(s)]2

\lambda 2j (
\=M\ast )

\leq 1

\lambda 2( \=M\ast )

\sqrt{}    
n\mathrm{r}\sum 

j=2

[(w(j))T\Psi (s)z(s)]2

=
1

\lambda 2( \=M\ast )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

n\mathrm{r}\sum 

j=2

w(j)(w(j))T\Psi (s)z(s)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

=
\| (I  - \xi \xi T)\Psi (s)z(s)\| 

\lambda 2( \=M\ast )
\leq 2\| \Psi (s)\| \| z(s)\| 

\lambda 2( \=M\ast )
.

Let \gamma n = 1T
n\mathrm{r}
\Psi (s)z(s)/(nr\lambda 1( \=M\ast )). Then under the assumptions of the theorem,

\| x\ast ,n  - \gamma n1n\mathrm{r}
\| \leq 

\biggl( 
2\Delta rs\| \Psi (s)\| 

\lambda 1( \=M\ast )(\lambda 2(\=L\ast ) - 2\Delta rs)
+

2\| \Psi (s)\| 
\lambda 2( \=M\ast )

\biggr) 
\| z(s)\| 

\leq 
\biggl( 

2\Delta rs(\Delta rs \vee \Delta sr)

\lambda 1( \=M\ast )(\lambda 2(\=L\ast ) - 2\Delta rs)
+

2(\Delta rs \vee \Delta sr)

\lambda 2(\=L\ast ) - 2\Delta rs

\biggr) 
\| z(s)\| 

=

\biggl( 
2\Delta rs(\Delta rs \vee \Delta sr)

\lambda 1( \=M\ast )\lambda 2(\=L\ast )(1 - o(1))
+

2(\Delta rs \vee \Delta sr)

\lambda 2(\=L\ast )(1 - o(1))

\biggr) 
\| z(s)\| = o(\| z(s)\| ).

Proof of Theorem 4.7(i)\prime . Note that \delta +rs > 0 implies \lambda 1( \=M\ast ) > 0, so ( \=M\ast ) - 1

exists. Denote

(M̄∗)−1 :=
M̃ (11) M̃ (12) nr1

M̃ (21) M̃ (22) nr2

r1 r2

, M̃∗ = M̃ (21).

Then we have that

x\ast ,n  - 

\Biggl[ 
(diag(\Psi 

(s)
+ 1n\mathrm{s}))

 - 1\Psi 
(s)
+ z(s)

\~M\ast \Psi (s)
+ z(s)

\Biggr] 
=

\biggl[ 
[ \~M (11)  - (diag(\Psi 

(s)
+ 1n\mathrm{s}

)) - 1]\Psi 
(s)
+ z(s)

0

\biggr] 
,

so it suffices to bound \| [ \~M (11)  - (diag(\Psi 
(s)
+ 1n\mathrm{s}

)) - 1]\Psi 
(s)
+ z(s)\| . \lambda 1( \=M\ast (22)) = \Omega (1) im-

plies that \=M\ast (22) is invertible. From the inverse formula of block matrices [33], it
follows that \~M (11) = [ \=M\ast (11)  - \=M\ast (12)( \=M\ast (22)) - 1 \=M\ast (21)] - 1. Hence,
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1542 YU XING AND KARL H. JOHANSSON

\| \~M (11)  - ( \=M\ast (11)) - 1\| 

(D.1)

= \| [ \=M\ast (11)  - \=M\ast (12)( \=M\ast (22)) - 1 \=M\ast (21)] - 1  - ( \=M\ast (11)) - 1\| 
\leq \| [ \=M\ast (11) - \=M\ast (12)( \=M\ast (22)) - 1 \=M\ast (21)] - 1\| \| ( \=M\ast (11)) - 1\| \| \=M\ast (12)( \=M\ast (22)) - 1 \=M\ast (21)\| 

=
\| \=M\ast (12)( \=M\ast (22)) - 1 \=M\ast (21)\| 

\lambda 1( \=M\ast (11))\lambda 1( \=M\ast (11)  - \=M\ast (12)( \=M\ast (22)) - 1 \=M\ast (21))

\leq \| \=M\ast (12)( \=M\ast (22)) - 1 \=M\ast (21)\| 
\lambda 1( \=M\ast (11))(\lambda 1( \=M\ast (11)) - \| \=M\ast (12)( \=M\ast (22)) - 1 \=M\ast (21)\| )

(D.2)

\leq \| \=M\ast (21)\| 2/\lambda 1( \=M\ast (22))

\lambda 1( \=M\ast (11))(\lambda 1( \=M\ast (11)) - \| \=M\ast (21)\| 2/\lambda 1( \=M\ast (22)))
,

(D.3)

where (D.1) follows from (A.5), and (D.2) from (A.4). Similarly we obtain that

\| ( \=M\ast (11)) - 1  - (diag(\Psi 
(s)
+ 1n\mathrm{s}))

 - 1\| \leq 
\| \=M\ast (11)  - diag(\Psi 

(s)
+ 1n\mathrm{s}

)\| 
\lambda 1( \=M\ast (11))\delta +rs

.(D.4)

The Gershgorin theorem yields that \lambda 1( \=M\ast (11))\geq \delta +rs and \| \=M\ast (11) - diag(\Psi 
(s)
+ 1n\mathrm{s})\| \leq 

2\Delta +
rr. The conclusion then follows from (D.3) and (D.4).

Appendix E. Proof of Theorem 4.11. Since we have derived a bound for
\| x\scrG ,n  - x\ast ,n\| in Theorem 4.3, it suffices to bound \| S\scrG (t) - x\scrG ,n\| . To this end, we
introduce the following concentration inequality (Lemma 1 of [58]) for a Markov chain.

Lemma E.1 (concentration of time-averaged states). Consider a discrete-time
Markov chain \{ X(t)\} taking values on a compact state space \scrX and having a unique
stationary distribution \pi . For a function f : \scrX \rightarrow \BbbR and \iota :=

\int 
\scrX f(x)\pi (dx), denote

g(x) :=
\sum \infty 

t=0\BbbE \{ f(X(t)) - \iota | X(0) = x\} and \| g\| s := sup\{ | g(x)| : x \in \scrX \} . If \| g\| s <\infty ,

then it holds for Sf (t) :=
1
t

\sum t - 1
i=0 f(X(i)), \varepsilon > 0, and t > 2\| g\| s/\varepsilon that

\BbbP \{ | Sf (t) - \iota | \geq \varepsilon \} \leq 2exp\{  - (t\varepsilon  - 2\| g\| s)2/(2t\| g\| 2s)\} .

Conditioned on a graph \scrG , \rho ( \=Q\scrG ) < 1 ensures that the gossip model has a well-
defined unique stationary distribution with mean x\scrG ,n, which follows from a standard
argument for gossip models (see [1, 48, 58]). Lemma A.7 ensures that \rho ( \=Q\scrG )< 1 holds
with probability at least 1 - \eta Q,n, where the probability is over the randomness of \scrG .

Now we derive a bound for \| S\scrG (t) - x\scrG ,n\| given a graph \scrG such that \rho ( \=Q\scrG )< 1.
Let fi(x) = xi for all x\in \BbbR n\mathrm{r} , 1\leq i\leq nr, and Lemma E.1 ensures that for all \varepsilon > 0

\BbbP \scrG \{ | S\scrG ,n
i (t) - x\scrG ,n

i | \geq \varepsilon \} \leq 2exp\{  - (t\varepsilon  - 2\| g\scrG ,ni \| s)2/(2t\| g\scrG ,ni \| 2s)\} ,(E.1)

where t > 2\| g\scrG ,ni \| s/\varepsilon and g\scrG ,ni is the ith component of G\scrG ,n(x) =
\sum \infty 

t=0\BbbE \scrG \{ X(t)  - 
x\scrG ,n| X(0) = x\} , x\in \BbbR n\mathrm{r} . Note that \| g\scrG ,ni \| s <\infty because for all x\in \scrX = [ - cx, cx]n\mathrm{r}

\| G\scrG ,n(x)\| \leq 
\infty \sum 

t=0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| (
\=Q\scrG )tx - 

\infty \sum 

i=t

( \=Q\scrG )i \=R\scrG z(s)
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| =

\infty \sum 

t=0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| (
\=Q\scrG )t

\Biggl( 
x - 

\infty \sum 

i=0

( \=Q\scrG )i \=R\scrG z(s)
\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\leq 
\infty \sum 

t=0

\| \=Q\scrG \| t\| x - x\scrG ,n\| = \| x - x\scrG ,n\| 
1 - \rho ( \=Q\scrG )

\leq 
2
\surd 
nrcx

1 - \rho ( \=Q\scrG )
=: s\scrG ,n\ast .
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Hence \| g\scrG ,ni \| s = supx\in \scrX \{ | G\scrG ,n
i (x)| \} \leq supx\in \scrX \{ \| G\scrG ,n(x)\| \} \leq s\scrG ,n\ast . Therefore, from

the union bound and (E.1), it follows that for all \varepsilon > 0 and t > 2s\scrG ,n\ast /\varepsilon 

\BbbP \scrG \{ \| S\scrG (t) - x\scrG ,n\| \geq 
\surd 
nr\varepsilon \} \leq 2nr exp\{  - (t\varepsilon  - 2s\scrG ,n\ast )2/[2t(s\scrG ,n\ast )2]\} ,

Lemma A.7 implies that

\BbbP \{ exp\{  - (t\varepsilon  - 2s\scrG ,n\ast )2/[2t(s\scrG ,n\ast )2]\} \leq exp\{  - (t\varepsilon  - 2\=s\ast )
2/[2t(\=s\ast )

2]\} \} \geq 1 - \eta Q,n,

where \=s\ast = 12
\surd 
nrcx\alpha 

\ast /\delta rs and \eta Q,n = r0n
1 - \delta \mathrm{r}\mathrm{s}/(8 logn) + 2n - 2/3 if \delta rs > 8 logn, and

\=s\ast = 6
\surd 
nrcx\alpha 

\ast /(\lambda 1( \=M\ast )  - \varepsilon M,n) and \eta Q,n = \eta M,n + 2n - 1/8 if \lambda 1( \=M\ast ) > \varepsilon M,n and
\Delta r \geq logn. Denoting \scrS 1 = \{ \rho ( \=Q\scrG )\leq \varepsilon Q,n\} , by the law of total probability,

\BbbP \{ \| S\scrG (t) - x\scrG ,n\| \geq 
\surd 
nr\varepsilon \} 

= \BbbP \{ \| S\scrG (t) - x\scrG ,n\| \geq 
\surd 
nr\varepsilon | \scrS 1\} \BbbP \{ \scrS 1\} + \BbbP \{ \| S\scrG (t) - x\scrG ,n\| \geq 

\surd 
nr\varepsilon | \scrS c

1\} \BbbP \{ \scrS c
1\} 

\leq 2nr exp
\Bigl\{ 
 - (t\varepsilon  - 2\=s\ast )2

2t(\=s\ast )2

\Bigr\} 
\BbbP \{ \scrS 1\} + \BbbP \{ \scrS c

1\} \leq 2nr exp
\Bigl\{ 
 - (t\varepsilon  - 2\=s\ast )2

2t(\=s\ast )2

\Bigr\} 
+ \eta Q,n.

Therefore, the conclusion follows from the above bound and Theorem 4.3.
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