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a b s t r a c t

We study transient behavior of gossip opinion dynamics, in which agents randomly interact pairwise
over a weighted graph with two communities. Edges within a community have identical weights
different from edge weights between communities. We first derive an upper bound for the second
moment of agent opinions. Using this result, we obtain upper bounds for probability that a large
proportion of agents have opinions close to average opinions. The results imply a phase transition
of transient behavior of the process: When edge weights within communities are larger than those
between communities and those between regular and stubborn agents, most agents in the same
community hold opinions close to the average opinion of that community with large probability, at
an early stage of the process. However, if the difference between intra- and inter-community weights
is small, most of the agents instead hold opinions close to everyone’s average opinion at the early
stage. In contrast, when the influence of stubborn agents is large, agent opinions settle quickly to
steady state. We then conduct numerical experiments to validate the theoretical results. Different
from traditional asymptotic analysis in most opinion dynamics literature, the paper characterizes the
influence of stubborn agents and community structure on the initial phase of the opinion evolution.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Opinion dynamics studies how personal opinions change
hrough interactions in social networks. Analysis of convergence
nd stability of opinion dynamics has gained considerable atten-
ion in recent decades (Proskurnikov & Tempo, 2018), but less
esearch has focused on transient behavior of the process. Social
etworks often have topology where subgroups of nodes are
ensely connected internally but loosely connected with others
that is, community structure, Fortunato & Hric, 2016). Such
tructure can influence opinion dynamics (Conover et al., 2011;
ota et al., 2019). It is often difficult to determine whether a
eal social network reaches steady state or not, and whether its
ommunities evolve homogeneously at the early stage. So it is
ecessary to investigate how the opinion dynamics, especially
uring its initial phase, corresponds to its community structure.
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fessor Grant 2017-01078), and the Swedish Foundation for Strategic Research
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Such results can also provide insight into community detection
based on state observations (Schaub et al., 2020; Xing et al., 2023)
and model reduction for large-scale networks (Cheng et al., 2018).

1.1. Related work

Individual opinions can be modeled by either continuous or
discrete variables (Castellano et al., 2009; Proskurnikov & Tempo,
2018). There are at least three types of continuous-opinion mod-
els explaining how interpersonal interactions shape social opin-
ion profiles, namely, models of assimilative, homophily, and
negative influences (Flache et al., 2017; Proskurnikov & Tempo,
2018). Evidences for all three types have been found in recent
empirical studies (De et al., 2019; Friedkin et al., 2021; Kozitsin,
2023). A crucial example of the first class of models is the DeGroot
model (DeGroot, 1974), in which agents update according to the
average of their neighbors’ opinions. The Friedkin–Johnsen (FJ)
model (Friedkin & Johnsen, 1990) generalizes the DeGroot model
and allows long-term disagreement, rather than consensus, by
assuming that agents are consistently affected by their initial
opinions. The Hegselmann–Krause (HK) model (Hegselmann &
Krause, 2002) and the Deffuant–Weisbuch (DW) model (Deffuant
et al., 2000) are representatives of the second model class, where
agents stay away from those holding different beliefs, and tend

to form clusters. Negative influences in the third class of models
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an increase opinion difference, and make the group end in
olarization (Proskurnikov & Tempo, 2018; Shi et al., 2019).
Most studies of opinion dynamics have focused on asymp-

otic behavior, attempting to answer why opinion disagreement
ccurs in the long run even though social interactions tend to
educe opinion difference (Abelson, 1964; Flache et al., 2017). In
ontrast, transient behavior has attracted less attention. As the
vailability of large-scale datasets increases, there is a growing
eed to understand how the process behaves over a finite time
nterval (Banisch et al., 2012; Chowell et al., 2016; Noorazar
t al., 2020). Important behavioral dynamics, such as election and
nline discussion, often have finite duration, and their prediction
ased on transient evolution is of great interest (Banisch & Araújo,
010; De et al., 2019). Extensive amount of information produced
y social media nowadays may change public opinions only tem-
orarily (Hill et al., 2013), making it hard for the dynamical
rocess to reach steady state. Asymptotic analysis thus may not
e sufficient for understanding such scenarios. Finally, large-scale
etworked dynamical processes may converge slowly (Banisch
t al., 2012; Lorenz, 2006), but stay close to a certain state for
long time (Barbillon et al., 2015; Dietrich et al., 2016). To
istinguish between the two types of states can be challenging
nd requires knowledge of transient system behavior. Banisch
t al. (2012) propose a framework to analyze the transient stage
f discrete-opinion models. Barbillon et al. (2015) study quasi-
tationary distributions of a contact process, and Xiong et al.
2017) analyze the transient opinion profiles of a voter model. Di-
trich et al. (2016) provide criteria for detecting transient clusters
n a generalized HK model that normally reaches a consensus
symptotically. Shree et al. (2022) study how opinion difference
volves over finite time intervals for a bounded confidence model.
The study of community structure can be traced back to Fes-

inger (1949), in which a community is defined as a complete
ubgraph in a network. One of the modern definitions for com-
unities is modularity, which characterizes the nonrandomness
f a group partition (Newman & Girvan, 2004). The stochastic
lock model (SBM) (Abbe, 2017), generating random graphs with
ommunities, is another popular framework in the literature.
esearchers have studied how community structure of a network
nfluences opinion evolution, based on several models such as the
Wmodel (Fennell et al., 2021; Gargiulo & Huet, 2010), the Taylor
odel (Baumann et al., 2020), and the Sznajd model (Si et al.,
009). Como and Fagnani (2016) study the DeGroot model with
tubborn agents over a weighted graph, and show that the steady
tate of the same community concentrates around the state of
ome stubborn agent.
This paper considers transient behavior of a gossip model

ith stubborn agents, where agents randomly interact in pairs.
he model is a stochastic counterpart of the DeGroot model. It
aptures the random nature of interpersonal influence and ex-
ibits various behavior. Consensus of the model has been studied
y Boyd et al. (2006) and Fagnani and Zampieri (2008). Acemoğlu
t al. (2013) show that the existence of stubborn agents may
xplain opinion fluctuations, and also that regular agents reach
imilar expected steady state, if the network is highly fluid. Como
nd Fagnani (2016) show that polarization can emerge for the
odel over a weighted graph with two stubborn agents. Studying

ransient behavior of the model can provide insight into analysis
f more complex models, because the linear averaging rule is a
ey building block of most opinion models.

.2. Contribution

This paper studies transient behavior of the gossip model over
weighted graph with two communities. It is assumed that edges
ithin communities have identical weights different from edge
2

weights between communities. We first obtain an upper bound
for the second moment of agent states (Lemma 4). Using this re-
sult, we provide probability bounds for agent states concentrating
around average opinions (Corollary 1), expected average opinions
(Theorem 1), and average initial opinions (Theorem 2). The re-
sults reveal a phase transition phenomenon (Holme & Newman,
2006; Shi et al., 2016): When edge weights within communities
are larger than those between communities and those between
regular and stubborn agents, most agents in the same community
have states with small deviation from the average opinion of
that community with large probability, at the early stage of the
process. If the difference between intra- and inter-community
weights is not so large, most agents have states concentrating
around everyone’s average opinion with small error and large
probability (Corollary 2). In contrast, if weights between regu-
lar and stubborn agents are larger than those between regular
agents, agent states have a distribution close to their stationary
one, right after the beginning of the process (Theorem 3 and
Corollary 3).

These results indicate that the gossip model has entirely differ-
ent transient behavior, under different link strength parameters.
It is known that the expected steady state depends on the posi-
tions of stubborn agents (Acemoğlu et al., 2013), and the model
reaches a consensus if there are no stubborn agents (Boyd et al.,
2006; Fagnani & Zampieri, 2008). The obtained results show that
agents may form transient clusters if the influence of stubborn
agents is relatively small. These transient clusters may not be
the same as the stationary ones, because they only depend on
initial states of regular agents and edge weights. The results also
demonstrate how transient behavior corresponds to community
structure, by showing that the difference between intra- and
inter-community weights has to be large enough to ensure the
existence and duration of the corresponding transient clusters.

The obtained results can be directly applied to community
detection based on state observations (Schaub et al., 2020; Xing
et al., 2023). Suppose that a network is unknown but several
snapshots of an opinion dynamic are available. Our analysis en-
sures that partitioning agent states can recover the community
labels of agents, if the states are collected in a transient time
interval and intra-community influence is large. The results can
also provide insight into predicting and distinguishing transient
behavior of an opinion formation process (Banisch & Araújo,
2010; Banisch et al., 2012). For example, when the size of a
network and the difference between intra- and inter-community
interaction strength are large, the duration of transient behavior
is expected to be large as well. Given an estimate of the runtime
of a process, we may determine whether the current clusters are
steady or not. Finally, exploiting properties of transient clusters
can help improve model reduction at the initial phase of dynam-
ics over large-scale networks with community structure (Cheng
et al., 2018). If agents in the same community have states close to
each other at the early stage, we may track the opinion formation
process with much less parameters than the original system, by
replacing topological data with community labels.

In the early work (Xing & Johansson, 2023), we study how the
expectation of agent states concentrates around average initial
states, which follows from Lemma 3 of the current paper. Here
we directly investigate how agent states evolve by analyzing the
second moment and characterizing transient behavior in detail.

1.3. Outline

Section 2 introduces the model and formulates the problem.
Section 3 provides theoretical results. Numerical experiments are
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resented in Section 4. Section 5 concludes the paper. Some
roofs are given in appendices.

otation. Denote the n-dimensional Euclidean space by Rn, the
set of n×m real matrices by Rn×m, the set of nonnegative integers
by N, and N+ = N \ {0}. Denote the natural logarithm by log x,
x > 0. Let 1n be the all-one vector with dimension n, e(n)i be the
n-dimensional unit vector with ith entry being one, In be the n×n
identity matrix, and 0m,n be the m×n all-zero matrix. Denote the
Euclidean norm of a vector by ∥·∥. For a vector x ∈ Rn, denote its
ith entry by xi, and for a matrix A ∈ Rn×n, denote its (i, j)th entry
by aij or [A]ij. The cardinality of a set S is written as |S|. For two
sequences of real numbers, f (n) and g(n) > 0, n ∈ N, we write
f (n) = O(g(n)) if |f (n)| ≤ Cg(n) for all n ∈ N and some C > 0, and
f (n) = o(g(n)) if |f (n)|/g(n)→ 0. Further assuming f (n) > 0, we
denote f (n) = ω(g(n)) if g(n) = o(f (n)), f (n) = Ω(g(n)) if there is
C > 0 such that f (n) ≥ Cg(n) for all n ∈ N, and f (n) = Θ(g(n)) if
both f (n) = O(g(n)) and f (n) = Ω(g(n)) hold. For x, y ∈ R, denote
x ∨ y := max{x, y} and x ∧ y := min{x, y}.

2. Problem formulation

The gossip model with stubborn agents is a random process
evolving over an undirected graph G = (V, E, A), where V is the
node set with |V| = n ≥ 2, E is the edge set, and A = [aij] ∈ Rn×n

is the weighted adjacency matrix. The graph G has no self-loops
(i.e., aii = 0, ∀i ∈ V). V contains two types of agents, regular and
stubborn, denoted by Vr and Vs, respectively (so V = Vr ∪ Vs and
Vr ∩ Vs = ∅). In this paper we assume that the regular agents
form two disjoint communities Vr1 and Vr2, and denote Ci = k
if i ∈ Vrk, k = 1, 2. We call C the community structure of the
graph. Regular agent i has state Xi(t) ∈ R at time t ∈ N, and
stubborn agent j has state zsj . Stacking these states, we denote
the state vector of regular agents at time t by X(t) ∈ Rnr and
the state vector of stubborn agents by zs ∈ Rns , where nr := |Vr |

and ns := |Vs|. The random interaction of the gossip model is
captured by an interaction probability matrix W = [wij] ∈ Rn×n

satisfying that wij = wji = aij/α, where α =
∑n

i=1
∑n

j=i+1 aij is the
sum of all edge weights and 1TW1/2 = 1. At time t , edge {i, j} is
selected with probability wij independently of previous updates,
and agents update as follows,

X(t + 1) = Q (t)X(t)+ R(t)zs, (1)

where Q (t) ∈ Rnr×nr , R(t) ∈ Rnr×ns , and

[Q (t), R(t)] =⎧⎨⎩[Inr −
1
2 (e

(nr )
i − e(nr )j )(e(nr )i − e(nr )j )T , 0nr ,ns ], if i, j ∈ Vr ,

[Inr −
1
2 e

(nr )
i (e(nr )i )T , 1

2 e
(nr )
i (e(ns)j )T ], if i ∈ Vr , j ∈ Vs.

That is, only regular agents in {i, j} update their states to the
average of the two agents’ previous states.

We study how community structure and stubborn agents in-
fluence transient behavior of agent states X(t). By transient be-
havior we mean a property of X(t) that holds over a finite time
interval, as opposed to asymptotic behavior that holds as time
t → ∞. As mentioned in Section 1, agents in the same commu-
nity tend to have similar states, but how well and how long these
clusters form still require rigorous analysis. We characterize the
transient clusters of X(t) based on three types of references: (1)
agents’ average states within communities and everyone’s av-
erage state at time t , (2) expected average states at time t ,
and (3) average initial states. As a comparison, we also study
the time when the distribution of X(t) is close to the stationary

distribution. To sum up, the problem is as follows.

3

Problem. Given the initial states X(0), the stubborn states zs, the
community structure C, and the weighted adjacency matrix A,
provide bounds for the deviation of X(t) from the three types
of average states over finite time intervals, and bounds for the
time when the distribution of X(t) is close to the stationary
distribution.

Probability bounds for the deviation of X(t) from average
states at time t are given in Corollary 1, which is a consequence of
second-moment analysis (Lemma 4). The deviation from expected
average states is analyzed in Theorem 1. Theorem 2 shows con-
centration of X(t) around average initial states. Theorem 3 gives
a lower bound of the time when X(t) is close to steady state.

3. Theoretical analysis

We study transient behavior of gossip model with two com-
munities. The analysis provides crucial insight into understanding
transient behavior of the model under general conditions. Main
results are presented in Section 3.1 and a discussion is given in
Section 3.2.

3.1. Main results

We assume that the regular agents form two disjoint commu-
nities Vr1 and Vr2 with equal size. For simplicity, sort the agents
as follows: Vr1 = {1, . . . , r0n/2}, Vr2 = {1+ r0n/2, . . . , r0n}, and
Vs = {1 + r0n, . . . , n}, with r0 ∈ (0, 1) such that r0n = nr is
an even integer. The proportion of stubborn agents is denoted by
s0 := 1− r0. We introduce the following assumptions, illustrated
in Fig. 1, for the weighted adjacency matrix A of graph G.

Assumption 1 (Network Topology).
(i) There exist l(r)s , l(r)d ∈ (0, 1), depending on n, such that aij =
l(r)s = l(r)s (n) for i, j ∈ Vr with i ̸= j and Ci = Cj, aij = l(r)d = l(r)d (n)
for i, j ∈ Vr with Ci ̸= Cj.
(ii) There exist l(s)ij ∈ [0, 1) with 1 ≤ i ≤ r0n and 1 ≤ j ≤ s0n,
depending on n, such that ai,r0n+j = ar0n+j,i = l(s)ij = l(s)ij (n). For
r0n+ 1 ≤ i, j ≤ n, aij = 0.
(iii) There exists l(s) ≥ 0 depending on n such that

∑
1≤j≤s0n

l(s)ij
= l(s) = l(s)(n) for all i ∈ Vr .

Remark 1. Assumption 1(i) indicates that the graph on regular
agents is a weighted graph, where edges between agents in
the same community have the same weight l(r)s and those be-
tween communities have weight l(r)d . In other words, the influence
strength between agents depends on their community labels.
Such a weighted graph can be treated as the expected adjacency
matrix of an SBM, in which nodes are assigned with community
labels and are connected by edges with probability depending on
their labels. We introduce this simplified assumption to highlight
the phase transition phenomenon in the transient phase of the
dynamics, and analysis under this assumption is still nontriv-
ial. It is possible to generalize the results to the SBM case by
considering the concentration of adjacency matrices (Chung &
Radcliffe, 2011). Although assuming that interpersonal influence
depends only on community labels is a simplified setting, this
model has been found to be effective also in empirical studies (De
et al., 2019). Note that the adjacency matrix A has zero entries
on the diagonal from the assumption that the graph has no self-
loops. Parameter l(s) given in Assumption 1(iii) is the sum of edge
weights between one regular agent and all stubborn agents, and
thus represents the total influence of stubborn agents on this
regular agent. We assume that this sum is the same for all regular
agents for analysis simplicity. The results can be extended to the
case where the weight sums have upper and lower bounds.
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Fig. 1. Illustration of Assumption 1. The graph on the left demonstrates the underlying network with two communities (dots and circles) and one stubborn agent
(the circle with a cross). Solid lines represent weighted edges. The weights are indicated by line thickness. Edge weights within communities are larger than between
communities (l(r)s > l(r)d ). The edge weights between regular agents and the stubborn agent are the same. The rest of the graphs show random interactions between
agents, represented by dashed lines. Agents interact more often if they have an edge with a larger weight.
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We further impose an assumption for the initial vector.

Assumption 2 (Initial Condition). The initial regular states X(0)
and the stubborn states zs are deterministic, and satisfy that
|Xi(0)| ≤ cx and |zsj | ≤ cx, for all 1 ≤ i ≤ r0n and 1 ≤ j ≤ s0n, and
some cx > 0.

From the definitions of Q (t) and R(t), it follows that

Q̄ := E{Q (t)}

= I −
1
2α

⎡⎢⎢⎢⎢⎢⎣
d1 −a12 · · · −a1,r0n

−a21
. . .

...

...
. . .

...

−ar0n,1 · · · −ar0n,r0n−1 dr0n

⎤⎥⎥⎥⎥⎥⎦ , (2)

R̄ := E{R(t)} =
1
2α

M̃ :=
1
2α

⎡⎢⎢⎣
a1,r0n+1 · · · a1,n

...
...

ar0n,r0n+1 · · · ar0n,n

⎤⎥⎥⎦ , (3)

where di =
∑

j∈V aij, i ∈ Vr . Note that Assumption 1 implies
di = r0n(l

(r)
s + l(r)d )/2+ l(s) − l(r)s =: d̄, i ∈ Vr , so

Q̄ = I −
1
2α
[(d̄+ l(r)s )I − Ã],

Ã :=
[
1r0n/2 0r0n/2

0r0n/2 1r0n/2

][
l(r)s l(r)d

l(r)d l(r)s

][
1r0n/2 0r0n/2

0r0n/2 1r0n/2

]T

.

t can be shown that Ã has a simple eigenvalue r0n(l
(r)
s + l(r)d )/2,

nd a simple eigenvalue r0n(l
(r)
s − l(r)d )/2, and the corresponding

nit vectors are η := 1r0n/
√
r0n and ξ := [1T

r0n/2
− 1T

r0n/2
]/
√
r0n,

espectively. Since Ã is symmetric, it has the eigenvalue zero
ith multiplicity r0n − 2 with orthogonal unit eigenvalues w(i),

3 ≤ i ≤ r0n. Moreover, η, ξ , w(3), . . . , w(r0n) form an orthonormal
basis of Rr0n. Denoting λ1 := l(s)/(2α), λ2 := (l(r)d r0n + l(s))/(2α),
and λ3 := [(l

(r)
s + l(r)d )r0n/2+ l(s)]/(2α), we present the following

ummary of properties of Q̄ and orthogonal vectors, which will
e used later.

emma 1. Under Assumption 1, the following hold.
i) The matrix Q̄ ∈ Rr0n×r0n has a simple eigenvalue 1 − λ1 with a
unit eigenvector η, a simple eigenvalue 1−λ2 with a unit eigenvector
ξ , and an eigenvalue 1− λ3 with multiplicity r0n− 2 and with unit
igenvectors w(i), 3 ≤ i ≤ r0n. In addition, the vectors η, ξ , w(3),
. . , w(r0n) form an orthonormal basis of Rr0n.
ii) If {x(i) ∈ Rn, 1 ≤ i ≤ n} is an orthonormal basis of Rn, then it
olds for all z ∈ Rn and 1 ≤ j ≤ n that

In =
n∑

i=1

x(i)(x(i))T ,

∥z∥2 =
 n∑

x(i)(x(i))T z
2
=

n∑
∥x(i)(x(i))T z∥2
i=1 i=1

4

=

 j∑
i=1

x(i)(x(i))T z
2
+

 n∑
i=j+1

x(i)(x(i))T z
2

.

Before presenting main theorems, we provide several proper-
ties of the gossip model. The first lemma concerns the explicit
expression of the weight sum of the graph G.

Lemma 2. Under Assumption 1, the weight sum α = r0n[(l
(r)
s +

l(r)d )r0n+ 4l(s) − 2l(r)s ]/4.

Proof. The conclusion follows directly from the definition of α

and Assumption 1. □

The next lemma gives the expression of E{X(t)}, and shows
how E{X(t)} evolves by decomposing it into three parts, which
correspond to the eigenspaces of Q̄ .

Lemma 3. Suppose that Assumption 1 holds. Then the expectation
of X(t) satisfies that, for all t ∈ N,

E{X(t)}

= (1− λ1)tηηTX(0)+
1
λ1
[1− (1− λ1)t ]ηηT R̄zs

+ (1− λ2)tξξ TX(0)+
1
λ2
[1− (1− λ2)t ]ξξ T R̄zs

+ (1− λ3)t
r0n∑
i=3

w(i)(w(i))TX(0)

+
1
λ3
[1− (1− λ3)t ]

r0n∑
i=3

w(i)(w(i))T R̄zs.

Proof. Lemma 1 yields that

Q̄ = (1− λ1)ηηT
+ (1− λ2)ξξ T

+ (1− λ3)
r0n∑
i=3

w(i)(w(i))T . (4)

hen the result follows from (1)–(3). □

We further introduce the following technical assumption.

ssumption 3. Denote l̃(s)+ := max1≤j≤s0n
∑

i∈Vr
l(s)ij . It holds that

(s)
+ ≤ cll(s) for some constant cl > 0.

emark 2. The assumption indicates that the maximum influ-
nce strength of a stubborn agent on all regular agents is of the
ame order of l(s). Otherwise, the influence of stubborn agents
ay not be homogeneous, which could be hard to analyze.

Now we present a lemma that will be used in the proof of
ain theorems. Denote Xη(t) := ηηTX(t), X ξ (t) := ξξ TX(t),
:=

∑r0n
i=3 w(i)(w(i))T (thus, Γ TΓ = Γ 2

= Γ ), and XΓ (t) :=
X(t). From Lemma 1, ηηT

+ ξξ T
+ Γ = Ir0n, and we have

he decomposition X(t) = Xη(t) + X ξ (t) + XΓ (t). Further, let
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T

⊥(t) := Γ̃ X(t), where Γ̃ = ξξ T
+ Γ . We get another decom-

osition of X(t): X(t) = Xη(t) + X⊥(t) and Xη(t)TX⊥(t) = 0.
Note that Xη(t)+ X ξ (t) and Xη(t) represent the average states in
each community and everyone’s average state, respectively (the
ith entry of Xη(t) + X ξ (t) is (2

∑
j∈VrCi

Xj(t))/(r0n)). So the two
decompositions reveal dynamics of average states. The following
lemma gives two upper bounds for the second moment of X(t)
under the two decompositions.

Lemma 4. Suppose that Assumptions 1–3 hold. Denote cs :=√
s0/r0. It holds for t ∈ N and n ≥ 4/r0 that

E{∥X(t)∥2}

≤ (1− λ1)t∥Xη(0)∥2 + (1− λ2)t∥X ξ (0)∥2 + (1− λ3)t∥XΓ (0)∥2

+ (1 ∧ λ1t)C11c2x r0n+
(λ2

λ3
∧ λ2t

)
[(1− λ2)t∥X ξ (0)∥2 + c2x ]

+ (1 ∧ λ2t)c2x , (5)

E{∥X(t)∥2}

≤ (1− λ1)t∥Xη(0)∥2 + (1− λ2 ∧ λ3)t∥X⊥(0)∥2

+ (1 ∧ λ1t)C21c2x r0n+
( λ1

λ2 ∧ λ3
∧ λ1t

)
C22c2x r0n, (6)

here C11 := 3 + cl/2 + 16cscl + (3cl + 23)/(2r0n), C21 :=

cscl + (5+ cl)/(2r0n), and C22 := 3+ cl/2+ 4cscl + 2/(r0n).

roof. The main idea of the proof is to separately bound the
erms E{∥Xη(t)∥2}, E{∥X ξ (t)∥2}, E{∥XΓ (t)∥2}, and E{∥X⊥(t)∥}2.
he conclusions then follow from Lemma 1. See Appendix A for
he details. □

emark 3. Lemma 4 provides bounds for how the second mo-
ent of agent states evolves over time. Three types of terms
ppear in the bounds. The first type is an exponentially decreasing
erm (1 − λi)t , indicating the rate of the averaging update. The
econd is a linearly increasing term 1 ∧ λit , showing cumulative
nfluence of stubborn agents. Lastly, the ratios λ2t ∧ (λ2/λ3)
nd λ1t ∧ [λ1/(λ2 ∧ λ3)] indicate the effect of relative influ-
nce strength between regular and stubborn agents. The bounds
ecome trivial for t = ω(1/λ1), and only describe transient
ehavior.

An immediate consequence of the preceding analysis is that
he difference between the agent states and average states can
e bounded. For two vectors X, Y ∈ Rr0n and ε ∈ (0, 1), denote
he set of agents i such that |Xi − Yi| > εcx (i.e., the difference
etween Xi and Yi is large) by S(X, Y , ε) := {i ∈ Vr : |Xi − Yi| >
cx}. Then the proof of Lemma 4 ensures the following result.

orollary 1. Suppose that Assumptions 1–3 hold. Then it holds for
∈ N, n ≥ 4/r0, and ε, δ ∈ (0, 1) that

P{|S(X(t), Xη(t)+ X ξ (t), ε)| ≥ δr0n}

≤
1

ε2δ

[
(1− λ3)t

∥XΓ (0)∥2

c2x r0n
+

(λ1

λ3
∧ λ1t

)(
3+

cl
2
+ 10cscl

+
cl + 13
2r0n

)
+

(λ2

λ3
+ λ2t

)( (1− λ2)t∥X ξ (0)∥2

c2x r0n
+

1
r0n

)]
, (7)

P{|S(X(t), Xη(t), ε)| ≥ δr0n}

≤
1

ε2δ

[
(1− λ2 ∧ λ3)t

∥X⊥(t)∥2

c2x r0n
+

( λ1

λ2 ∧ λ3
∧ λ1t

)
3+

cl
2
+ 4cscl +

2
r0n

)]
. (8)

Remark 4. The first result (7) bounds the probability of at least
δr n agents having states at least εc away from the average
0 x

5

states in their communities. This probability bound decreases first
due to the decay of (1 − λ3)t and the relatively small value of
it , and then increases with t to a constant bound (whether the
onstant bound is trivial depends on the ratios λi/λ3, i = 1, 2, see
Corollary 2 for details). The second result (8) shows that there can
be a time interval, over which many agents have states close to
everyone’s average state with high probability.

Proof. To prove the results, note that by the Markov inequality,
for X, Y ∈ Rr0n and ε ∈ (0, 1),

P{|S(X, Y , ε)| ≥ δr0n} ≤ P{∥X − Y∥2 ≥ ε2δc2x r0n}

≤
E{∥X − Y∥2}

ε2δc2x r0n
. (9)

ow note that X(t) − Xη(t) − X ξ (t) = XΓ (t) and X(t) − Xη(t) =
⊥(t), so (7) and (8) follow from the upper bounds of E{∥XΓ (t)∥2}
nd E{∥X⊥(t)∥2} given in the proof of Lemma 4 ((A.11) and (A.12),
espectively). □

The preceding results indicate that we can use average states
s references to describe how agent states evolve in finite time.
urther analysis based on Lemma 4 can yield stronger results.
hat is, we can use the expected average states E{Xη(t)+ X ξ (t)}

and E{Xη(t)} as references.

Theorem 1. Suppose that Assumptions 1–3 hold and n ≥ 4/r0. Let
ε, δ, γ ∈ (0, 1) be such that ε2δγ ≤ 2/e.
(i) Assume that

λ2 log[2/(ε2δγ )] < λ3, (10)[
(4+ C11)λ1 log

2
ε2δγ

+ C12

(
1+ log

2
ε2δγ

)
λ2

]
< ε2δγ λ3. (11)

hen (t1, t1) ̸= ∅, and for all t ∈ (t1, t1) it holds that

P{|S(X(t),E{Xη(t)+ X ξ (t)}, ε)| ≥ δr0n} ≤ γ , (12)

where C11 is given in Lemma 4, C12 = ∥X ξ (0)∥2/(c2x r0n) +1/(r0n),

t1 =
log[2/(ε2δγ )]

λ3
, and t1 =

ε2δγ /2− C12λ2/λ3

(4+ C11)λ1 + C12λ2
∧

1
λ2

.

(ii) Assume that

2
[
(3+ C21) log

2
ε2δγ

+ C22

]
λ1 < ε2δγ (λ2 ∧ λ3). (13)

Then (t2, t2) ̸= ∅, and for all t ∈ (t2, t2) it holds that

P{|S(X(t),E{Xη(t)}, ε)| ≥ δr0n} ≤ γ , (14)

where C21 and C22 are given in Lemma 4,

t2 =
log[2/(ε2δγ )]

λ2 ∧ λ3
, and t2 =

ε2δγ /2− C22λ1/(λ2 ∧ λ3)
(3+ C21)λ1

.

Proof. To prove (12), from (9) it suffices to bound E{∥X(t) −
E{Xη(t)} − E{X ξ (t)}∥2}. From Lemma 1(ii), we have that

E{∥X(t)− E{Xη(t)} − E{X ξ (t)}∥2}

= E{∥X(t)∥2} − 2E{X(t)}T (E{Xη(t)} + E{X ξ (t)})

+ ∥E{Xη(t)} + E{X ξ (t)}∥2

= E{∥X(t)∥2} − ∥E{Xη(t)}∥2 − ∥E{X ξ (t)}∥2. (15)
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rom Lemma 3 and the Bernoulli inequality, it holds that

E{Xη(t)}∥2

= {(1− λ1)tηTX(0)+ [1− (1− λ1)t ]ζ1}2

≥ (1− λ1)2t∥Xη(0)∥2 − 2λ1t(1− λ1)t∥Xη(0)∥|ζ1|,

E{X ξ (t)}∥2

=

{
(1− λ2)tξ TX(0)+

λ1

λ2
[1− (1− λ2)t ]ζ2

}2

≥ (1− λ2)2t∥X ξ (0)∥2 − 2λ1t(1− λ2)t∥X ξ (0)∥|ζ2|.

Thus,

− ∥E{Xη(t)}∥2 − ∥E{X ξ (t)}∥2

≤ −(1− λ1)2t∥Xη(0)∥2 − (1− λ2)2t∥X ξ (0)∥2 + 3λ1tc2x r0n.

Hence, when 1/λ3 ≤ t ≤ 1/λ2, from (5) in Lemma 4, (15) can be
bounded by

(1− λ3)t∥XΓ (0)∥2 + (4+ C11)λ1tc2x r0n

+ λ2

( 1
λ3
+ t

)
[(1− λ2)t∥X ξ (0)∥2 + c2x ].

Hence from (9),

P{|S(X(t),E{Xη(t)+ X ξ (t)}, ε)| > δr0n}

≤
1

ε2δ

[
(1− λ3)t + (4+ C11)λ1t + C12

(λ2

λ3
+ λ2t

)]
.

When t ≥ t1 ≥ 1/λ3, (1 − λ3)t ≤ et log(1−λ3) ≤ e−λ3t ≤ e−λ3t1 ≤

ε2δγ /2. On the other hand, when t ≤ t1,

4+ C11)λ1t + C12

(λ2

λ3
+ λ2t

)
≤

ε2δγ

2
.

f the assumptions of (i) hold, then (t1, t1) ̸= ∅ and the conclusion
ollows. The second part of the theorem can be derived similarly
rom (6). □

Remark 5. The results provide bounds for the probability of
gent states concentrating around expected average states. For
he case where stubborn agents have small influence and the
nfluence strength within communities is much larger than that
etween communities (λ1 and λ2 much smaller than λ3), (12)
ndicates that most agent states concentrate around expected
verage states within communities and form transient clusters. If
he stubborn-agent influence is small but the influence strength
ithin and between communities is similar (λ1 much smaller
han λ2 ∧ λ3, but λ2 and λ3 are similar), (14) indicates that
ost agent states concentrate around everyone’s expected av-
rage state. See Corollary 2 for detailed discussion on how link
trength parameters influence the concentration. To obtain a
ontrivial bound, δ (the proportion of regular agents whose states
o not concentrate) and γ (the probability that the concentra-

tion does not occur) need to be small. But ε (the error of the
oncentration) does not need. For example, it is sufficient to set
to be less than half of the distance between average states
f the two communities, so that the two transient clusters can
e distinguished. For a fixed network, setting smaller ε and δ

eads to a large bound of γ , as stronger concentration occurs
ith less probability. Since λ1, λ2, and λ3 depend on the network
ize n, n has to be large enough to ensure that (11) and (13)
hold with small γ . Simulation (Figs. 2 and 3) illustrates that such
concentration can occur over small networks. Studying sharp
bounds for the concentration probability is left to future work.

Remark 6. Here we compare the obtained results with exist-
ing transient behavior analysis. Dietrich et al. (2016) study a
6

generalized HK model and define a transient cluster as a sub-
group of agents whose opinion range decreases faster than the
distance of the subgroup from other agents. We characterize
agent states based on their distance from average states. Such
a framework includes situations where clusters approach each
other, but defining such references requires specifying subgroups
beforehand. Shree et al. (2022) provide bounds for opinion dif-
ference in finite time for a stochastic bounded confidence model.
These bounds coincide with the asymptotic behavior. In contrast,
we study transient behavior of the gossip model that is different
from the asymptotic behavior. For the gossip model without
stubborn agents, Fagnani and Zampieri (2008) show that ∥X(t)−
Xη(t)∥2 is close to its expectation at the early stage of the process,
which provides insight into why both average states and expected
average states can be used as references. We will study such
concentration in the future.

It is possible to derive bounds similar to Theorem 1 for
S(X(t), Xη(0) + X ξ (0), ε) and S(X(t), Xη(0), ε), i.e., the deviation
of agent states from average initial states. We state the results in
the next theorem.

Theorem 2. Suppose that Assumptions 1–3 hold and n ≥ 4/r0. Let
ε, δ, γ ∈ (0, 1) be such that ε2δγ ≤ 2/e.
(i) If (10) and (11) hold, then we have that for all t ∈ (t1, t1) ̸= ∅,
here t1 and t1 are given in Theorem 1(i),

P{|S(X(t), Xη(0)+ X ξ (0), ε)| ≥ δr0n} ≤ γ . (16)

(ii) If (13) holds, then we have that for all t ∈ (t2, t2) ̸= ∅, where
2 and t2 are given in Theorem 1(ii),

P{|S(X(t), Xη(0), ε)| ≥ δr0n} ≤ γ . (17)

Proof. The proof is similar to that of Theorem 1. See Appendix B
for the details. □

Remark 7. Theorems 1 and 2 provide similar probability bounds
for concentration of agent states around expected average states
and average initial states. However, concentration around ex-
pected average states may require a much smaller network size
than the latter, as shown in Section 4. Future work will ex-
plore sharp bounds to distinguish between the two types of
concentration.

So far we have studied concentration around average states
under conditions of λi. As a consequence of Theorem 2, the
following corollary shows how such phenomena depend on link
strength parameters l(r)s , l(r)d , and l(s). Parallel results hold for the
expected average states.

Corollary 2. Suppose that Assumptions 1–3 hold and denote l(s)0 :=

l(s)/(r0n).
(i) If l(r)s = ω(l(r)d ∨ l(s)0 ), then for large enough n depending on l(r)s ,
l(r)d , and l(s), (16) holds for all t ∈ (t1, t1) with

t1 =
(
Θ(1)+ O

( l(s)0

l(r)s

))
r0n, and t1 = Θ

( l(r)s

l(r)d ∨ l(s)0

)
r0n.

(ii) If l(r)s ≤ l(r)d + o(l(r)d ) and l(r)d = ω(l(s)0 ), then for large enough n
epending on l(r)d and l(s), (17) holds for all t ∈ (t2, t2) with

t2 =
(
Θ(1)+ O

(
[0 ∨ (l(r)s − l(r)d )] + l(s)0

l(r)d

))
r0n, and

t2 = Θ

( l(r)d
(s)

)
r0n.
l0
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Table 1
Summary of main results.
Conditions Behavior of agent states Results

l(r)s = ω(l(r)d ∧ l(s)0 ) with l(s)0 = l(s)/(r0n)
(stubborn influence is small,
intra-community influence is large)

Concentrate around average states/expected average
states/average initial states within communities over the
time interval (Θ(r0n), Θ(l(r)s r0n/(l

(r)
d ∨ l(s)0 )))

(7), (12),
Theorem 2(i),
Corollary 2(i)

l(r)s ≤ l(r)d + o(l(r)d ) and l(r)d = ω(l(s)0 )
(stubborn influence is small, intra-
community influence is moderate or small)

Concentrate around everyone’s average state/expected
average state/average initial state over the time interval
(Θ(r0n), Θ(l(r)d r0n/l

(s)
0 ))

(8), (14),
Theorem 2(ii),
Corollary 2(ii)

l(r)s ∨ l(r)d = o(l(s)0 )
(stubborn influence is large)

Close to the stationary distribution over the time
interval (Θ(r0n log(r0n)),+∞)

Corollary 3
T

R
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t
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Proof. From the definition of λi, it follows that (10) and (11) are
quivalent to(
log

2
ε2δγ

− 1
)
l(s)0 +

(
2 log

2
ε2δγ

− 1
)
l(r)d < l(r)s , (18)

2
[
2(4+ C11 + C12) log

2
ε2δγ

+ 2C12 − ε2δγ

]
l(s)0

+

[
4C12

(
1+ log

2
ε2δγ

)
− ε2δγ

]
l(r)d < ε2δγ l(r)s . (19)

he condition l(r)s = ω(l(r)d ∨ l(s)0 ) guarantees that (18) and (19)
hold for large enough n that depends on l(r)s , l(r)d , and l(s). Hence
the conclusion follows from the expression of t1 and t1 given in
heorem 1. The proof of (ii) is similar. It suffices to note that (13)
s equivalent to

2
[
2(3+ C21) log

2
ε2δγ

+ 2C22 − ε2δγ

]
l(s)0

< ε2δγ [l(r)d + (l(r)d ∧ l(r)s )]. (20)

The condition l(r)d = ω(l(s)0 ) ensures that (20) holds with large
enough n that depends on l(r)d and l(s). □

Remark 8. The first part of the corollary indicates that, if the
intra-community weights are of higher order than the inter-
community weights and the average weight between regular and
stubborn agents, most agent states concentrate around the initial
average opinion of the corresponding community over a finite
time interval. The length of this interval depends on relative
strength within communities to that between communities and
between regular and stubborn agents. The assumption l(r)s ≤ l(r)d +

(l(r)d ) of the second part means that intra-community weights
re less than or slightly larger than inter-community weights. If
tubborn agents have small influence, then most agent states are
lose to everyone’s initial average opinion. Since l(r)s ≤ l(r)d +o(l(r)d )
mplies l(r)s = O(l(r)d ), the corollary characterizes a phase transition
henomenon.

The preceding results study the case where the influence of
tubborn agents is small. Now we investigate the case with large
tubborn influence. The gossip model (1) converges to a unique
tationary distribution π (i.e., if X(0) has distribution π , then X(t)
as the same distribution for all t ∈ N+), if there is at least one
tubborn agent and the network is connected (Acemoğlu et al.,
013; Xing et al., 2023). To measure the distance between tran-
ient and stationary distributions, we introduce the Wasserstein
etric between two measures µ and ν,

W (µ, ν) := inf
(X,Y )∈J

E{∥X − Y∥},

here J is the set of random vector pairs (X, Y ) such that the
arginal distributions of X and Y are µ and ν, respectively. The

ollowing theorem provides the time interval over which the
istribution of X(t) is close to π .
7

heorem 3. Suppose that Assumptions 1–2 hold and l(s) > 0. Then,
for ε ∈ (0, 1), it holds that

dW (X(t), π ) ≤ ε, ∀t >
log{cx(r0n)

5
2 [1+ 1/(2λ1)]/ε}

log[1/(1− λ1)]
.

Proof. The conclusion is obtained from a coupling argument. See
Appendix C. □

Theorem 3 characterizes asymptotic behavior of the gossip
model. The next corollary focuses on the case where the influence
of stubborn agents is large.

Corollary 3. Suppose that Assumptions 1–2 hold. If (l(r)d ∨ l
(r)
s )r0n =

o(l(s)), then dW (X(t), π ) ≤ ε holds for ε ∈ (0, 1) and t > t0 with
t0 = t0(ε) = Θ(r0n log(r0n)).

emark 9. Corollary 3 indicates that, if the influence of stubborn
gents is large, then the distribution of X(t) can be close to the
tationary distribution of the gossip model at the early stage of
he process.

.2. Discussion and extension

In this subsection, we first summarize obtained transient be-
avior under different parameter settings, and then discuss the
xtensions of the results.
In the previous subsection, we obtained several probability

ounds for agent states concentrating around average states
Corollary 1), expected average states (Theorem 1), and average
nitial states (Theorem 2). Note that these bounds are the same
xcept for some constants. So the explicit dependence of transient
ehavior on link strength parameters l(r)s , l(r)d , and l(s), given in
orollary 2, still holds for average states and expected average
tates. Table 1 summarizes the findings. The results indicate a
hase transition phenomenon: the model behaves differently at
he early stage of the process under different parameter settings.

Note that the obtained bounds are not tight. As shown in
ection 4, expected average states are good references for tran-
ients. The concentration occurs for small networks. In contrast,
oncentration around average initial states requires much larger
. The key idea of studying transient behavior is to find references
uch as the expected average states and to bound the deviation
f agent states from such references, so it is possible to gener-
lize the obtained results to multiple-community cases. Matrix
erturbation theory can be used to analyze the case involving
nequal-sized communities or heterogeneous influence of stub-
orn agents (i.e., Assumption 1(iii) does not hold). Studying the
ossip model over an SBM needs analysis of the deviation of
he random graph from its expectation based on concentration
nequalities (e.g. Chung and Radcliffe (2011)).
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Fig. 2. Behavior of the gossip model. The figure illustrates the evolution of regular-agent states under four sets of parameters. The color of a trajectory represents
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4. Numerical simulation

In this section, we conduct numerical experiments to validate
the theoretical results obtained in Section 3.

In Fig. 2 we demonstrate transient behavior of the gossip
model. Set the network size n = 60, the bound of agent states
cx = 1, and the proportion of regular agents r0 = 0.9. Generate
he initial value Xi(0) independently from uniform distribution on
0, 1) for all i ∈ Vr1, Xj(0) independently from uniform distri-
bution on (−1, 0) for all j ∈ Vr2, and set stubborn-agent states
s
= [1T

s0n/2
− 1T

s0n/2
]
T . First, we set the edge weight between

agents in the same community to be l(r)s = (log2.5 n)/n, greater
than the edge weight between communities l(r)d = (log n)/n. The
edge weights between regular and stubborn agents are as follows:
for all i ∈ Vr1, l

(s)
ij ≡ (log2 n)/n for 1 ≤ j ≤ s0n/2, and l(s)ij ≡ 0 for

1+ s0n/2 ≤ j ≤ s0n; for all i ∈ Vr2, l
(s)
ij ≡ 0 for 1 ≤ j ≤ s0n/2, and

l(s)ij ≡ (log2 n)/n for 1+ s0n/2 ≤ j ≤ s0n. Hence l(s) = (s0 log2 n)/2.
This setting intuitively means that the first half of stubborn agents
influence only Vr1, whereas the second half influence only Vr2.
The setting is used in all numerical experiments. Fig. 2(a) shows
that agents form two transient clusters corresponding to their
community labels and centered around the expected average
states within communities. Asymptotic behavior of the system
can be different from what is shown in Fig. 2(a). As an example,
set l(r)s = (log2.5 n)/n, l(r)d = (log n)/n, and l(s) = (s0 log n)/2.
In Fig. 2(b), agents in the same community also form transient
clusters, but they get close in the end. Next, we set l(r)s =

log2.5 n)/n, l(r)d = (log2.4 n)/n, and l(s) = (s0 log n)/2. That is,
he influence of stubborn agents is small, and inter-community
nfluence strength is similar to intra-community strength. Hence
ll agents form a single transient cluster and concentrate around
veryone’s average state, as demonstrated in Fig. 2(c). However,
hey cannot reach a consensus and keep fluctuating, due to the
resence of stubborn agents. Finally, set l(r) = l(r) = (log n)/n and
s d W

8

(s)
= (s0 log3 n)/2. Fig. 2(d) shows that agent states move quickly

towards the positions of stubborn agents if the latter have large
influence.

Next we study the probability of concentration around av-
erage states, investigated in Theorems 1 and 2. We first study
concentration around expected average states. Set n = 60,
l(r)s = (log2.5 n)/n, l(r)d = (log n)/n, and l(s) = (s0 log n)/2
(i.e., intra-community edge weights are large). The model is run
for 200 times and the final time step is ⌊n(log n)2⌋. We estimate
the probability pt that the concentration fails by computing
1

200

∑200
k=1 I[|Sε

t (k)|≥δr0n], where I[·] is the indicator function. Here
Sε
t (k) is the set S(X(t),E{Xη(t)+ X ξ (t)}, ε) at the kth run, that is,
he set of agents with states at least εcx away from the expected
verage state of their communities at time t . The concentration

error ε and the proportion of non-concentrating agents δ are
efined in Theorem 1. Fig. 3(a) shows that pt first decreases with
ime and then fluctuates around a constant, and it decreases with
, validating Theorem 1(i). Although the theoretical bound is not
ight (e.g., the ratio λ2/(λ3ε

2δ) ≈ 18.7 > 1), the experiment
indicates that the concentration still occurs for small networks.
Now we set l(r)d = (log2.4 n)/n for the case of moderate intra-
ommunity influence. Fig. 3(b) illustrates that the probability
aries similarly, aligning with Theorem 1(ii). Next we examine
he concentration around average initial states. Fig. 3(c) shows
hat the concentration around average initial states within com-
unities happens with less probability than that around expected
verage states (presented in Fig. 3(a)). Larger networks ensure
ore concentration (Fig. 3(d) with n = 500). The concentration
round everyone’s average initial state, given in Fig. 3(e), is
imilar to Fig. 3(b).
Finally, we conduct two experiments to demonstrate how

oncentration around average initial states changes when edge
eights vary. First, we set l(r)d = (logβ2 n)/n = (log5 n)/n and

(s)
= log n, and consider l(r)s = (logβ1 n)/n with β1 = 1, . . . , 10.

e run the gossip model for 50 times, for each value of β and
1
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e

Fig. 3. The probability pt of at least δ proportion of agents with states at least εcx away from average states at time t . In all experiments, l(s) = (s0 log n)/2. The

xpected average states are considered in (a–b), whereas the average initial states in (c–e).
Fig. 4. Phase transition of transient behavior of the gossip model. In the experiments, we set l(r)s = (logβ1 n)/n, l(r)d = (logβ2 n)/n, and l(s) = logβ3 n, and compute
dc = 2|

∑
i∈Vr1

Xi(t)−
∑

i∈Vr2
Xi(t)|/(r0n) with t = ⌊n log n⌋.
for n = 60, 500, 1000, 2000, and compute the difference dc =
2|

∑
i∈Vr1

Xi(t)−
∑

i∈Vr2
Xi(t)|/(r0n) with t = ⌊n log n⌋. Thus dc

represents the difference between the averages of agent states in
the two communities. The case dc = 1 means local concentration
whereas dc = 0 represents global concentration. Fig. 4(a) presents
the phase transition phenomenon (the effect becomes stronger
as n grows). It shows that the local concentration appears when
β1 − β2 > 0 (i.e., l(r)d = o(l(r)s )), as predicted by Corollary 2. On
the other hand, Fig. 4(a) indicates that the global concentration
appears when β1 − β2 < 0. In the second experiment, we set
l(r)s = (log n)/n and l(r)d = (logβ2 n)/n = (log5 n)/n, and consider
l(s) = logβ3 n with β3 = 1, . . . , 10. This examines the phase
transition in the influence of stubborn agents. Hence, dc = 2
means regular agents have states close to stubborn ones, and
dc = 0 represents the global concentration. Fig. 4(b) shows that
the transition occurs at nl(s)d = Θ(l(s)) (i.e., β3 = β2), validating
Corollary 3.
9

5. Conclusion

In this paper, we investigated transient behavior of the gossip
model with two communities. By analyzing the second moment
of agent states, we found a phase transition phenomenon: When
edge weights within communities are large and weights between
regular and stubborn agents are small, most agents have states
close to the average opinion within their communities at the early
stage of the process. When the difference between intra- and
inter-community weights is small, most agents have states close
to everyone’s average opinion. In contrast, if weights between
regular and stubborn agents are large, the distribution of agent
states is close to the stationary distribution. Future work includes
to study the gossip and other models over general graphs, and to
link theoretical findings to empirical data.
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ppendix A. Proof of Lemma 4

roof of (5). We divide the proof into four steps. Step 1 provides
pper and lower bounds for E{∥Xη(t)∥2}. Bounds of E{∥X ξ (t)∥2}

are given in step 2. The bounds are used in step 3, obtaining an
upper bound for E{∥XΓ (t)∥2}. Step 4 concludes the proof.

Step 1 (Bounding E{∥Xη(t)∥2}). Note that

E{∥Xη(t + 1)∥2|X(t)}

= E{X(t + 1)TηηTηηTX(t + 1)|X(t)}

= E{X(t)TQ (t)TηηTQ (t)X(t)|X(t)} + 2E{X(t)TQ (t)T

ηηTR(t)zs|X(t)} + E{(zs)TR(t)TηηTR(t)zs|X(t)}

= X(t)TE{Q (t)TηηTQ (t)}X(t)+ 2X(t)TE{Q (t)TηηTR(t)}zs

+ (zs)TE{R(t)TηηTR(t)}zs. (A.1)

In the last equation, X(t) and zs are taken out of the condi-
tional expectations due to measurability, and the conditional
expectations degenerate into expectations because [Q (t), R(t)] is
independent of X(t). Let Er be the collection of edges whose end
points are regular agents, and let Es be the set of edges connecting
regular and stubborn agents. Hence, E = Er ∪ Es. The definition
of Q (t) implies that Q (t)TηηTQ (t) = ηηT when an edge in Er
is selected, and Q (t)TηηTQ (t) = (η − ηueu/2)(η − ηueu/2)T if
{u, v} ∈ Es is selected. So

E{Q (t)ηηTQ (t)}

= ηηT
−

l(s)

2α

∑
u∈Vr

ηueuηT
−

l(s)

2α

∑
u∈Vr

η(ηueu)T +
l(s)

4α

∑
u∈Vr

η2
ueue

T
u

= (1− 2λ1)ηηT
+

λ1

2r0n
Ir0n,

here eu := e(r0n)u . Denote esv := e(s0n)v , l̃(s)v :=
∑

u∈Vr
l(s)uv , and

˜ :=
∑

1≤v≤s0n
l̃(s)v esv/

√
s0n. Then

E{Q (t)TηηTR(t)}

=

∑
{u,v+r0n}∈Es

(
η −

1
2
ηueu

)(1
2
ηuesv

)T l(s)uv

α

=

∑
1≤v≤s0n

∑
u∈Vr

( l(s)uv

2α
ηuη(esv)

T
−

l(s)uv

4α
η2
ueu(e

s
v)

T
)

=
csλ1

l(s)
ηη̃T
−

λ1

2r0nl(s)
M̃,

{R(t)TηηTR(t)}

=
1
4

∑
1≤v≤s0n

∑
u∈Vr

l(s)uv

α
η2
ue

s
v(e

s
v)

T
=

λ1D̃(s)

2r0nl(s)
,

here D̃(s)
:=

∑
1≤v≤s0n

l̃(s)v esv(e
s
v)

T . Hence, (A.1) is

X(t)T
[
(1− 2λ1)ηηT

+
λ1

2r0n
Ir0n

]
X(t)+ 2X(t)T

csλ1

l(s)
ηη̃T
−

λ1

2r0nl(s)
M̃

]
zs + (zs)T

λ1D̃(s)

2r0nl(s)
zs

= (1− 2λ1)∥Xη(t)∥2 +
λ1

2r0n
∥X(t)∥2 +

2csλ1

l(s)
X(t)Tηη̃T zs

−
λ1

r0nl(s)
X(t)T M̃zs +

λ1

2r0nl(s)
(zs)T D̃(s)zs.

aking expectation yields the following upper and lower bounds
or E{∥Xη(t)∥2} when n ≥ 1/r0,

{∥Xη(t + 1)∥2}
10
≤

(
1−

3
2
λ1

)
E{∥Xη(t)∥2} +

λ1

2r0n
(E{∥X ξ (t)∥2} + E{∥XΓ (t)∥2})

+
2csλ1

l(s)
E{X(t)}Tηη̃T zs −

λ1

r0nl(s)
E{X(t)}T M̃zs +

λ1 l̃
(s)
+

2r0nl(s)
∥zs∥2,

(A.2)

E{∥Xη(t + 1)∥2} ≥ (1− 2λ1)E{∥Xη(t)∥2} +
2csλ1

l(s)
E{X(t)}Tηη̃T zs

−
λ1

r0nl(s)
E{X(t)}T M̃zs. (A.3)

Furthermore, by induction and from (A.2), Assumptions 2 and 3,
and Lemma 5 at the end of this section,

E{∥Xη(t)∥2} ≤ (1− λ1)t∥Xη(0)∥2 + λ1

( 1
λ1
∧ t

)
[
2cscl(∥Xη(0)∥ + |ζ1|)∥zs∥ +

1
2r0n

(c2x r0n+ ∥X(0)∥
2

+ 3∥z̃s∥2 + cl∥zs∥2)
]
, (A.4)

here z̃s := M̃zs/l(s) and ζ1 := ηT R̄zs/λ1 = ηT M̃zs/l(s).

tep 2 (Bounding E{∥X ξ (t)∥2}). Note that

{∥X ξ (t + 1)∥2|X(t)}

= E{X(t)TQ (t)T ξξ TQ (t)X(t)|X(t)} + 2E{X(t)TQ (t)T

ξ TR(t)zs|X(t)} + E{(zs)TR(t)T ξξ TR(t)zs|X(t)}

= X(t)TE{Q (t)T ξξ TQ (t)}X(t)+ 2X(t)TE{Q (t)T ξξ TR(t)}zs

+ (zs)TE{R(t)T ξξ TR(t)}zs, (A.5)

here the last equation is obtained in the same way as (A.1).
enote E=r := {{u, v} ∈ Er : Cu = Cv} and E ̸=r := {{u, v} ∈ Er :
u ̸= Cv}. For Q (t)T ξξ TQ (t), we have that

{Q (t)T ξξ TQ (t)}

=

∑
{u,v}∈E=r

l(r)s

α
ξξ T
+

∑
{u,v}∈E ̸=r

l(r)d

α
(ξ − ξueu − ξvev)

(ξ − ξueu − ξvev)T +
∑
{u,v}∈Es

l(s)u,v−r0n

α

(
ξ −

1
2
ξueu

)(
ξ −

1
2
ξueu

)T

=

( ∑
{u,v}∈E=r

+

∑
{u,v}∈E ̸=r

+

∑
{u,v}∈Es

)(auv
α

ξξ T
)

+
l(r)d

α

∑
{u,v}∈E ̸=r

[−ξ (ξueu + ξvev)T − (ξueu + ξvev)ξ T
]

+
l(r)d

α

∑
{u,v}∈E ̸=r

(ξueu + ξvev)(ξueu + ξvev)T

+

∑
u∈Vr

∑
1≤v≤s0n

l(s)uv

2α
(−ξuξeTu − ξueuξ T )+

∑
u∈Vr

∑
1≤v≤s0n

l(s)uv

4α
ξ 2
u eue

T
u

= ξξ T
−

l(r)d

α
r0nξξ T

+
l(r)d

α

∑
{u,v}∈E ̸=r

(ξueu + ξvev)(ξueu + ξvev)T

−
l(s)

α
ξξ T
+

l(s)

4αr0n
Ir0n

=

(
1−

l(r)d r0n+ l(s)

α

)
ξξ T
+

λ1

2r0n
Ir0n

+
2(λ2 − λ1)

r0n

∑
̸=

(ξueu + ξvev)(ξueu + ξvev)T
{u,v}∈Er
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E

= (1− 2λ2)ξξ T
+

λ1

2r0n
Ir0n +

2(λ2 − λ1)
r0n

(
ξξ T
+

1
2
Γ

)
,

here the last equation is obtained from∑
{u,v}∈E ̸=r

(ξueu + ξvev)(ξueu + ξvev)T

=
1
2
Ir0n +

∑
u∈Vr1

∑
v∈Vr2

(ξuξveueTv + ξuξveveTu )

=
1
2
Ir0n +

1
2
(ξξ T
− ηηT ) = ξξ T

+
1
2
Γ .

Recall that esi = e(s0n)i . Similarly to step 1, we have that

E{Q (t)T ξξ TR(t)} =
csλ1

l(s)
ξ ξ̃ T
−

λ1

2r0nl(s)
M̃,

here we denote

˜ :=
1
√
s0n

∑
1≤v≤s0n

( ∑
u∈Vr1

l(s)uv −
∑
u∈Vr2

l(s)uv

)
esv.

In addition, E{R(t)T ξξ TR(t)} = λ1D̃(s)/(2r0nl(s)). Therefore,

A.5) = (1− 2λ2)∥X ξ (t)∥2 +
λ1

2r0n
∥Xη(t)∥2 +

4λ2 − 3λ1

2r0n
∥X ξ (t)∥2

+
2λ2 − λ1

2r0n
∥XΓ (t)∥2 +

2csλ1

l(s)
X(t)T ξ ξ̃ T zs −

λ1

r0nl(s)
X(t)T M̃zs

+
λ1

2r0nl(s)
(zs)T D̃(s)zs.

ence when n ≥ 4/r0, the following bounds hold

{∥X ξ (t + 1)∥2}

≤

(
1−

3
2
λ2

)
E{∥X ξ (t)∥2} +

λ1

2r0n
E{∥Xη(t)∥2} +

λ2

r0n
E{∥XΓ (t)∥2}

+
2csλ1

l(s)
E{X(t)}T ξ ξ̃ T zs −

λ1

r0nl(s)
E{X(t)}T M̃zs +

λ1 l̃
(s)
+

2r0nl(s)
∥zs∥2,

(A.6)

{∥X ξ (t + 1)∥2} ≥ (1− 2λ2)E{∥X ξ (t)∥2} +
2csλ1

l(s)
E{X(t)}T ξ ξ̃ T zs

−
λ1

r0nl(s)
E{X(t)}T M̃zs. (A.7)

urthermore, by induction and from (A.6), Assumptions 2 and 3,
nd Lemma 5 at the end of this section,

{∥X ξ (t)∥2} ≤ (1− λ2)t∥X ξ (0)∥2 + λ1

( 1
λ2
∧ t

)
2cscl(∥X ξ (0)∥ + |ζ2|)∥zs∥ +

1
2r0n

(c2x r0n+ ∥X(0)∥
2

+ 3∥z̃s∥2 + cl∥zs∥2)
]
+ λ2

( 1
λ2
∧ t

)
c2x , (A.8)

here ζ2 := ξ T R̄zs/λ1 = ξ T M̃zs/l(s).

Step 3 (Bounding E{∥XΓ (t)∥2}). Note that

E{∥X(t + 1)∥2|X(t)}

= X(t)TE{Q (t)TQ (t)}X(t)+ 2X(t)TE{Q (t)TR(t)}zs

+ zsE{R(t)TR(t)}zs, (A.9)

E{Q (t)TQ (t)}

=

∑
{u,v}∈Er

[
I −

1
2
(eu − ev)(eu − ev)T

]auv
α
+

∑
{u,v}∈Es

(
I −

3
4
eueTu

)auv
α

= Q̄ −
λ1 Ir n
2 0

11
=

(
1−

3
2
λ1

)
ηηT
+

(
1− λ2 −

1
2
λ1

)
ξξ T
+

(
1− λ3 −

1
2
λ1

)
Γ ,

E{Q (t)TR(t)} =
∑

1≤v≤s0n

∑
u∈Vr

(
I −

1
2
eueTu

)(1
2
eu(esv)

T
) l(s)uv

α
=

λ1M̃
2l(s)

,

E{R(t)TR(t)} =
1
4α

∑
1≤v≤s0n

∑
u∈Vr

esv(e
s
v)

T l(s)uv =
λ1D̃(s)

2l(s)
.

Thus,

(A.9) =
(
1−

3
2
λ1

)
∥Xη(t)∥2 +

(
1− λ2 −

1
2
λ1

)
∥X ξ (t)∥2

+

(
1− λ3 −

1
2
λ1

)
∥XΓ (t)∥2 +

λ1

l(s)
X(t)T M̃zs +

λ1

2l(s)
(zs)T D̃(s)zs.

(A.10)

t follows from the preceding equation, Lemma 1(ii), (A.3) and
A.7) that

{∥XΓ (t + 1)∥2}

≤ λ1E{∥Xη(t)∥2} + λ2E{∥X ξ (t)∥2} + (1− λ3)E{∥XΓ (t)∥2}

+

(
1+

2
r0n

)λ1

l(s)
E{X(t)}T M̃zs +

λ1 l̃
(s)
+

2l(s)
∥zs∥2

−
2csλ1

l(s)
(E{X(t)}Tηη̃T zs + E{X(t)}T ξ ξ̃ T zs).

From Lemma 5, Assumptions 2 and 3, and (A.8), we know by
induction that

E{∥XΓ (t)∥2}

≤ λ2E{∥X ξ (t − 1)∥2} + (1− λ3)E{∥XΓ (t − 1)∥2} + λ1c2x r0n

+

(
1+

2
r0n

)λ1

2
(∥X(0)∥2 + 3∥z̃s∥2)+

clλ1

2
∥zs∥2

+ 2csclλ1∥zs∥(∥Xη(0)∥ + ∥X ξ (0)∥ + |ζ1| + |ζ2|)

≤ (1− λ3)t∥XΓ (0)∥2 + λ1

( 1
λ3
∧ t

)[(
1+

1
2r0n

)
c2x r0n

+
1
2

(
1+

3
r0n

)
(∥X(0)∥2 + 3∥z̃s∥2)+

(
1+

1
r0n

) cl
2
∥zs∥2

+ 2cscl∥zs∥(∥Xη(0)∥ + 2∥X ξ (0)∥ + |ζ1| + 2|ζ2|)
]

+ λ2

( 1
λ3
∧ t

)
[(1− λ2)t∥X ξ (0)∥2 + c2x ]. (A.11)

tep 4 (Putting everything together). Lemma 1 yields that
{∥X(t)∥2} = E{∥Xη(t)∥2} + E{∥X ξ (t)∥2} + E{∥XΓ (t)∥2}, so (5)
ollows from summarizing (A.4), (A.8), (A.11), and the fact 1/λ1 ≥

/λk, k = 2, 3.

roof of (6). The derivation of the upper bound (6) is similar to
hat of (5). Decompose X(t) = Xη(t) + X⊥(t). In step 1, we have
btained upper and lower bounds for E{∥Xη(t)∥2}, so it suffices
o obtain an upper bound for E{∥X⊥(t)∥2}. From (A.3) and (A.10),

{∥X⊥(t + 1)∥2}

≤

(
1−

3
2
λ1

)
E{∥Xη(t)∥2} +

(
1− λ2 ∧ λ3 −

1
2
λ1

)
E{∥X⊥(t)∥2}

+
λ1

l(s)
E{X(t)}T M̃zs +

λ1

2l(s)
(zs)T D̃(s)zs − E{∥Xη(t + 1)∥2}

≤ (1− λ2 ∧ λ3)E{∥X⊥(t)∥2} + λ1c2x r0n
(
3+

cl
2
+ 4cscl +

2
r0n

)
≤ (1− λ2 ∧ λ3)t∥X⊥(0)∥2 + λ1

( 1
λ2 ∧ λ3

∧ t
)
c2x r0n(

3+
cl
2
+ 4cscl +

2
r0n

)
. (A.12)
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herefore, the bound (6) follows from combining the preceding
nequality and (A.4). □

emma 5. Under the conditions of Lemma 4, the following bounds
old,

E{X(t)}Tηη̃T zs| ≤ l̃(s)+ (∥Xη(0)∥ + |ζ1|)∥zs∥,

|E{X(t)}T ξ ξ̃ T zs| ≤ l̃(s)+ (∥X ξ (0)∥ + |ζ2|)∥zs∥,⏐⏐⏐E{X(t)}T M̃zs

l(s)

⏐⏐⏐ ≤ 1
2
(∥X(0)∥2 + 3∥z̃s∥2).

Proof. It follows from Lemma 3 that, for all t ∈ N,

|E{X(t)}Tηη̃T zs|

=

⏐⏐⏐{(1− λ1)tηTX(0)+
1
λ1
[1− (1− λ1)t ]ηT R̄zs

}
η̃T zs

⏐⏐⏐
≤ (1− λ1)t |ηTX(0)η̃T zs| + [1− (1− λ1)t ]

⏐⏐⏐ηT R̄
λ1

zsη̃T zs
⏐⏐⏐

≤ |ηTX(0)η̃T zs| +
⏐⏐⏐ηT R̄

λ1
zsη̃T zs

⏐⏐⏐
≤ l̃(s)+ (∥Xη(0)∥ + |ζ1|)∥zs∥,

|E{X(t)}T ξ ξ̃ T zs|

=

⏐⏐⏐{(1− λ2)tξ TX(0)+
1
λ2
[1− (1− λ2)t ]ξ T R̄zs

}
ξ̃ T zs

⏐⏐⏐
≤ (∥X ξ (0)∥ + |ζ2|)∥ξ̃∥∥zs∥ ≤ l̃(s)+ (∥X ξ (0)∥ + |ζ2|)∥zs∥.

Again from Lemma 3, it holds that⏐⏐⏐ 1
l(s)

(E{X(t)})T M̃zs
⏐⏐⏐

=

⏐⏐⏐(1− λ1)tηTX(0)ηT M̃
l(s)

zs + [1− (1− λ1)t ]ηT R̄
λ1

zsηT M̃
l(s)

zs

+ (1− λ2)tξ TX(0)ξ T M̃
l(s)

zs +
λ1

λ2
[1− (1− λ2)t ]ξ T R̄

λ1
zsξ T M̃

l(s)
zs

+ (1− λ3)t
r0n∑
i=3

(w(i))TX(0)(w(i))T
M̃
l(s)

zs

+
λ1

λ3
[1− (1− λ3)t ]

r0n∑
i=3

(w(i))T
R̄
λ1

zs(w(i))T
M̃
l(s)

zs
⏐⏐⏐

≤

⏐⏐⏐ηTX(0)ηT M̃
l(s)

zs
⏐⏐⏐+ ⏐⏐⏐ηT R̄

λ1
zsηT M̃

l(s)
zs

⏐⏐⏐+ ⏐⏐⏐ξ TX(0)ξ T M̃
l(s)

zs
⏐⏐⏐

+

⏐⏐⏐ξ T R̄
λ1

zsξ T M̃
l(s)

zs
⏐⏐⏐+ ⏐⏐⏐ r0n∑

i=3

(w(i))TX(0)(w(i))T
M̃
l(s)

zs
⏐⏐⏐

+

⏐⏐⏐ r0n∑
i=3

(w(i))T
R̄
λ1

zs(w(i))T
M̃
l(s)

zs
⏐⏐⏐

≤ (∥Xη(0)∥ |ζ1| + |ζ1|2 + ∥X ξ (0)∥ |ζ2| + |ζ2|2

+ ∥XΓ (0)∥ |ζ3| + |ζ3|2) (A.13)

≤
1
2
[∥Xη(0)∥2 + ∥X ξ (0)∥2 + ∥XΓ (0)∥2 + 3(|ζ1|2 + |ζ2|2 + |ζ3|2)]

(from 2ab ≤ a2 + b2, ∀a, b ∈ R)

=
1
2
(∥X(0)∥2 + 3∥z̃s∥2).

Here, the last equation follows from Lemma 1(ii), and (A.13) is
obtained from the following fact,⏐⏐⏐ r0n∑

(w(i))TX(0)(w(i))T
M̃
l(s)

zs
⏐⏐⏐
i=3

12
≤

( r0n∑
i=3

((w(i))TX(0))2
) 1

2
( r0n∑

i=3

(
(w(i))T

M̃
l(s)

zs
)2) 1

2

=

 r0n∑
i=3

w(i)(w(i))TX(0)
  r0n∑

i=3

w(i)(w(i))T
M̃
l(s)

zs


=: ∥XΓ (0)∥ |ζ3|,

where the first inequality follows from the Cauchy–Schwarz in-
equality, and the first equation is from the orthogonality of w(i),
3 ≤ i ≤ r0n. □

Appendix B. Proof of Theorem 2

Similar to Theorem 1, to prove (i) it suffices to bound the
probability P{|S(X(t), Xη(0)+ X ξ (0), ε)| ≥ δr0n}. From Lemma 3
nd the Bernoulli inequality we have that

{∥X(t)− (Xη(0)+ X ξ (0))∥2}

= E{∥X(t)∥2} + ∥Xη(0)+ X ξ (0)∥2 − 2E{X(t)}T (Xη(0)+ X ξ (0))

= E{∥X(t)∥2} + ∥Xη(0)∥2 + ∥X ξ (0)∥2 − 2(1− λ1)t∥Xη(0)∥2

− [1− (1− λ1)t ]ζ1ηTX(0)− 2(1− λ2)t∥X ξ (0)∥2

−
λ1

λ2
[1− (1− λ2)t ]ζ2ξ TX(0)

≤ E{∥X(t)∥2} + [1− 2(1− λ1)t ]∥Xη(0)∥2

+ [1− 2(1− λ2)t ]∥X ξ (0)∥2 + 2λ1t|ζ1|∥Xη(0)∥ + 2λ1t|ζ2|∥X ξ (0)∥

≤ E{∥X(t)∥2} + [1− 2(1− λ1)t ]∥Xη(0)∥2

+ [1− 2(1− λ2)t ]∥X ξ (0)∥2 + 2λ1tc2x r0n

≤ (1− λ3)t∥XΓ (0)∥2 + λ1tc2x r0n
(
6+

cl
2
+ 16cscl +

3cl + 23
2r0n

)
+

(λ2

λ3
+ λ2t

)
(∥X ξ (0)∥2 + c2x ),

where the last inequality follows from (5) with 1/λ3 ≤ t ≤ 1/λ2.
ence from (9),

{|S(X(t), Xη(0)+ X ξ (0), ε)| ≥ δr0n}

≤
1

ε2δ

[
(1− λ3)t + (3+ C11)λ1t + C12

(λ2

λ3
+ λ2t

)]
,

and the conclusion of (i) follows. The second part of the theorem
can be derived from similar calculations.

Appendix C. Proof of Theorem 3

Denote the maximum-absolute-column-sum, spectral, and
maximum-absolute-row-sum norm by ∥ · ∥1, ∥ · ∥, and ∥ · ∥∞.
et {[Q ′(t) U ′(t)], t ∈ N} be an i.i.d. sequence having the same
distribution as and independent of the sequence {[Q (t) U(t)], t ∈
N} with U(t) := R(t)zs. Denote ΦQ ′ (s, t) = Q ′(t) · · ·Q ′(s),
←−
Φ Q ′ (s, t) = Q ′(s) · · ·Q ′(t), ΦQ ′ (t + 1, t) =

←−
Φ Q ′ (t + 1, t) = I ,

t ≥ s ≥ 0, and

X̃(t) = ΦQ ′ (0, t)X(0)+
t∑

i=0

ΦQ ′ (t + 1− i, t)U ′(t − i),

X̃∗(t) =
t∑

i=0

ΦQ ′ (t + 1− i, t)U ′(t − i)

+ΦQ ′ (0, t)
∞∑

i=t+1

←−
Φ Q ′ (t + 1, i− 1)U ′(i).

So X̃(t) and X̃∗(t) have the same distribution as X(t) and π ,
respectively (Acemoğlu et al., 2013; Xing et al., 2023). Hence, the
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A

A

B

ollowing result yields the conclusion.

dW (X(t), π ) ≤ E{∥X̃(t)− X̃∗(t)∥}

= E
{ΦQ ′ (0, t)X(0)−ΦQ ′ (0, t)

∞∑
i=t+1

←−
Φ Q ′ (t + 1, i− 1)U ′(i)

}
≤ cx
√
r0nE{∥ΦQ ′ (0, t)∥}

+
1
2
cx
∞∑

i=t+1

E{∥ΦQ ′ (0, t)
←−
Φ Q ′ (t + 1, i− 1)∥}

≤
1
2
cxr0n

(
2E{∥ΦQ ′ (0, t)∥1}

+

∞∑
i=t+1

E{∥ΦQ ′ (0, t)
←−
Φ Q ′ (t + 1, i− 1)∥1}

)
≤ cx(r0n)

5
2

(
1+

1
2λ1

)
(1− λ1)t+1,

where the second inequality follows from Assumption 2, and the
last inequality is obtained from

E{∥
←−
Φ Q (0, t)∥1} ≤

∑
1≤j≤r0n

∑
1≤i≤r0n

E{|[
←−
Φ Q (0, t)]ij|}

≤ r0n∥E{
←−
Φ Q (0, t)}∥∞ = r0n∥Q̄ t+1

∥∞ ≤ (r0n)
3
2 (1− λ1)t+1.
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