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a b s t r a c t

We study how to jointly recover community structure and estimate interaction probabilities of gossip
opinion dynamics. In this process, agents randomly interact pairwise, and there are stubborn agents
never changing their states. Such a model illustrates how disagreement and opinion fluctuation arise
in a social network. It is assumed that each agent is assigned with one of two community labels, and
the agents interact with probabilities depending on their labels. The considered problem is to jointly
recover the community labels of the agents and estimate interaction probabilities between the agents,
based on a single trajectory of the model. We first study stability and limit theorems of the model, and
then propose a joint recovery and estimation algorithm based on a trajectory. It is verified that the
community recovery can be achieved in finite time, and the interaction estimator converges almost
surely. We derive a sample-complexity result for the recovery, and analyze the estimator’s convergence
rate. Simulations are presented for illustration of the performance of the proposed algorithm.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Networks appear across domains from biology to sociology.
eal networks often exhibit community structures, where subsets
f nodes have dense connections locally but sparse connections
lobally (Fortunato & Hric, 2016). Community detection is to
artition nodes according to the network topology. There is a
rowing interest in studying community detection based on state
bservations of dynamics (Prokhorenkova, Tikhonov, & Litvak,
022; Schaub, Segarra, & Tsitsiklis, 2020). Lacking topology data
akes the problem harder than classic ones. Particularly, it is
nclear how to recover communities out of a single trajectory
f opinion dynamics (Ravazzi, Dabbene, Lagoa, & Proskurnikov,
021).
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1.1. Related work

In this subsection, we first review key community definitions
and detection approaches (Fortunato & Hric, 2016), then discuss
recovering communities based on state observations, and finally
clarify our motivation.

Traditional community detection methods apply classic clus-
tering techniques to node pairs assigned with certain weights
(Girvan & Newman, 2002). Newman and Girvan (2004) introduce
the concept of modularity to measure the quality of a graph
partition. A famous algorithm based on optimizing modularity is
the Louvain method (Blondel, Guillaume, Lambiotte, & Lefebvre,
2008), which assigns nodes to one of the communities itera-
tively to achieve the largest modularity gain. Another approach
to community detection is based on statistical inference, which
introduces generative network models and considers an observed
network as a sample. A canonical model is the stochastic block
model (SBM). Abbe (2017) reviews detectability of the SBM and
performance of algorithms. Besides optimization and statistical
approaches, another method is based on dynamical processes
(e.g. Rosvall & Bergstrom, 2008). Morarescu and Girard (2010)
propose a bounded-confidence model, where agents converge to
several clusters corresponding to communities.

Recently, the study of community detection for networked

dynamics has emerged. The problem is to recover communities
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nly based on state observations of a dynamical process. The
ain difference between this problem and the classic ones, es-
ecially the dynamic-based methods, is that the network is not
vailable. Prokhorenkova et al. (2022) and Ramezani, Khodadadi,
nd Rabiee (2018) apply maximum likelihood methods to cascade
ata. Prokhorenkova et al. (2022) also propose a two-step pro-
edure, first constructing a network and then clustering agents
ased on the network. Roddenberry, Schaub, Wai, and Segarra
2020), Schaub et al. (2020) and Wai, Segarra, Ozdaglar, Scaglione,
nd Jadbabaie (2019) introduce the blind community detection
ethod, using sample covariance matrices of agent states for re-
overy. Peixoto (2019) investigates simultaneously reconstructing
he topology and the community structure for epidemics and
he Ising model. Berthet, Rigollet, and Srivastava (2019) study
ecovery for an Ising blockmodel.

We study how to jointly recover the community structure and
stimate the interaction probabilities of gossip opinion dynamics.
he problem arises from recent investigation of learning inter-
ersonal influence from dynamics (Ravazzi et al., 2021). Network
ata is useful for decision making, but directly collecting such
ata can be hard, due to topic specificity (Cowan & Baldassarri,
018), consistency issues (Netrapalli & Sanghavi, 2012), and pri-
acy concern (De Montjoye et al., 2018). Learning large-scale
etworks may be computationally expensive, so recovering com-
unities as a coarse description is a good option. The gossip up-
ate rule captures the random nature of individual interactions. It
s a fundamental element of many opinion models (Proskurnikov
Tempo, 2017), and has been extensively studied (Boyd, Ghosh,
rabhakar, & Shah, 2006). Stubborn agents, such as media and
pinion leaders, play a crucial role in opinion formation (Ramos
t al., 2015). Acemoğlu, Como, Fagnani, and Ozdaglar (2013) show
hat the existence of stubborn agents can explain opinion oscilla-
ion. A generalization of stubborn agents is to assume that each
gent has some level of stubbornness with respect to its initial
elief. This generalization is considered by the Friedkin–Johnsen
odel and its extensions (Proskurnikov, Tempo, Cao, & Friedkin,
017; Tian & Wang, 2018).

.2. Contributions

We consider jointly recovering communities and estimating
nteraction probabilities for gossip opinion dynamics. Each agent
s assigned with one of two community labels, and the agents
nteract with probabilities depending on their labels. Our contri-
utions are as follows:
1. We study properties of the model by leveraging results on

arkov chains and stochastic approximation (SA) (Theorem 1). It
s shown that regular-agent states converge in distribution to a
nique stationary distribution, and the time average of the agent
tates converge almost surely. An explicit expression for the mean
f the stationary distribution is given (Proposition 2).
2. We develop a joint algorithm (Algorithm 1) to recover the

ommunity structure and to estimate the interaction probabili-
ies, based on Polyak averaging and SA techniques. The algorithm
s able to recover the communities in finite time, and then able to
stimate the interaction probabilities consistently (Theorem 2).
3. We show how to theoretically analyze the developed

oint algorithm. A concentration inequality for Markov
hains (Lemma 1) is obtained, and it is used in the sample-
omplexity analysis of the recovery step (Theorem 3). The ob-
ained result shows that the probability of unsuccessful recovery
ecays exponentially over time. Additionally, we analyze con-
ergence rate of the interaction estimator from an SA argument
Theorem 4).

The obtained results indicate that a Polyak averaging tech-
ique can be useful for recovering communities based on a single
2

trajectory. In addition, we establish a sample-complexity result
for successful recovery (recovering all community labels cor-
rectly), providing a quantitative dependence of the recovery prob-
ability on model parameters. These two points make our paper
different from Roddenberry et al. (2020), Schaub et al. (2020)
and Wai et al. (2019), which use covariance matrices of samples
from several trajectories, and different from Wai, Scaglione, and
Leshem (2016), which considers learning a sparse characteriza-
tion of the network from the gossip model. The considered prob-
lem is different from classic system identification (e.g., Sarkar,
Rakhlin, & Dahleh, 2021), because stubborn agents normally have
fixed states, which does not satisfy input conditions required
for system identification, and also because community recovery
cannot be obtained directly from parameter estimates. The major
differences between this paper and its conference version (Xing,
He, Fang, & Johansson, 2020) are that we clarify our assump-
tions in more detail, characterize the sample complexity and
the convergence rate of the algorithm, and add more numerical
experiments to illustrate its performance.

1.3. Outline

The rest of the paper is organized as follows. Section 2 formu-
lates the problem. Analysis of the model is given in Section 3,
and a joint recovery and estimation algorithm is proposed in
Section 4. Section 5 presents convergence results of the algorithm,
and Section 6 provides several numerical experiments. Finally,
Section 7 concludes the paper. Proofs are given in Xing, He, Fang,
and Johansson (2021).

Notation. Denote the n-dimensional Euclidean space, the set of
n × m real matrices, and the set of nonnegative integers by Rn,

n×m, and N. Denote N+
= N \ {0}. Let 1n, ei, In, and 0n,m be

-dimensional all-one vector, the unit vector with ith entry being
ne, the n × n identity matrix, and the n × m all-zero matrix.
et 1n1,n2 := 1n11

T
n2 . Denote both the Euclidean norm of a vector

and the spectral norm of a matrix by ∥ · ∥. Denote the diagonal
matrix with the elements of a vector x on the main diagonal by
diag{x}. The ith component of a vector x is denoted by xi, and
the (i, j)-th entry of a matrix A by aij or [A]ij. Denote the spectral
radius of A by ρ(A), and the cardinality of a set Ω by |Ω|. I[property]
is the indicator function. For two sequences {ak} and {bk} with
ak ∈ Rn and 0 ̸= bk ∈ R, k ≥ 1, ak = O(bk) means that
∥ak/bk∥ ≤ C for all k and some C > 0, and ak = o(bk) means
that limk→∞ ∥ak/bk∥ = 0. An event happens almost surely (a.s.)
if it happens with probability one.

2. Problem formulation

This section introduces the considered model and the defini-
tion of communities, and formulates the problem.

2.1. Gossip model with stubborn agents

The gossip model is a random process over an undirected
graph G = (V, E) with the agent set V , the edge set E , and no self-
loops. The agents have two types, regular and stubborn, denoted
by Vr and Vs, respectively (V = Vr ∪Vs, Vr ∩Vs = ∅). Each agent i
has a state Xi(t) ∈ R, and the state vector at time t ∈ N is X(t) ∈

Rn. Stubborn agents do not change their states during the process.
An interaction probability matrix W = [wij] ∈ Rn×n captures
agent interactions, where wij = wji ≥ 0, wij > 0 ⇔ {i, j} ∈ E ,
i, j ∈ V , and 1TW1/2 = 1. At time t , edge {i, j} is selected with
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Fig. 1. Illustration of the interaction model (4) and an adjacency matrix generated from an SBM.
d
α

a

c

o
f
X
s
T
g
t
l

R
S
p
t

robability wij independently of previous updates, and agents
update as follows, with the averaging weight q ∈ [0, 1),

k(t + 1) =

⎧⎨⎩
qXk(t) + (1 − q)Xl(t), k ∈ Vr ∩ {i, j},

l ∈ {i, j} \ k,
Xk(t), otherwise.

(1)

Define a sequence of independent and identically distributed
i.i.d.) n-dimensional random matrices {R(t), t ∈ N} such that
{R(t) = Rij

} = wij, where 1 ≤ i < j ≤ n and

Rij
=

⎧⎪⎪⎨⎪⎪⎩
I − (1 − q)(ei − ej)(ei − ej)T , if i, j ∈ Vr ,

I − (1 − q)ei(ei − ej)T , if i ∈ Vr , j ∈ Vs,

I − (1 − q)ej(ej − ei)T , if i ∈ Vs, j ∈ Vr ,

I, if i, j ∈ Vs.

he update rule (1) can then be written as

(t + 1) = R(t)X(t). (2)

ince stubborn agents never change their states, we rewrite (2)
o end up with the following compact form of the gossip model
ith stubborn agents:
r (t + 1) = A(t)X r (t) + B(t)X s(t), (3)

here X r (t) and X s(t) are the state vectors obtained from stacking
he states of regular and stubborn agents, respectively, X s(t) ≡
s(0), and [A(t) B(t)] is the matrix obtained from stacking rows
f R(t) corresponding to regular agents. So {[A(t) B(t)], t ∈ N} is a
equence of i.i.d. random matrices. Assume that the initial vector
(0) is fixed for simplicity. If X(0) is random, we can study the
odel by conditioning on realizations of X(0).

.2. Communities

We follow the framework of SBMs (Abbe, 2017) and Ising
lockmodels (Berthet et al., 2019), and assume that agents have
re-assigned community labels. We define a community as the
et of agents that have the same label.
In particular, we consider the scenario where the network has

wo disjoint communities, V1 and V2. Denote the community label
f i by C(i), so C(i) = k for i ∈ Vk, k = 1, 2. We call C the
ommunity structure of the network. We further assume that the
nteraction probability of the agents i and j with i ̸= j is

ij =

{
ws, if C(i) = C(j),
wd, if C(i) ̸= C(j),

(4)

where ws, wd ∈ (0, 1) and ws ̸= wd. Thus agents in the same
ommunity (different communities) interact with probability ws
wd). Fig. 1(a) illustrates two different interaction models, via
n experiment where a gossip model defined by (4) is run for
3

2000 iterations and the number of interactions between agents
is counted. To ease notation, we assume that V1 = {1, . . . , n1}

and V2 = {n1 + 1, . . . , n1 + n2} with nk := |Vk|, k = 1, 2, and
n1 + n2 = n. Thus the interaction probability matrix is

W =

[
ws1n1,n1 − diag{ws1n1} wd1n1,n2

wd1n2,n1 ws1n2,n2 − diag{ws1n2}

]
. (5)

It has a block structure corresponding to the community struc-
ture of the network. The following example illustrates how the
preceding assumption arises naturally from an SBM. It shows that
a graph generated from an SBM defines an interaction probability
matrix close to an averaged version with the same structure
as (5).

Example 1. Consider an SBM with two communities, commonly
studied in community detection (Abbe, 2017). Such an SBM is
a random graph, denoted by SBM(n, ν1, ν2, ps, pd). Here n is the
number of agents, ν1 ∈ (0, 1) (resp. ν2 ∈ (0, 1)) is the portion
of agents with community label 1 (resp. label 2), where ν1 +

ν2 = 1 and ν1n and ν2n are integers, and ps, pd ∈ (0, 1) are the
link probabilities between agents in the same and in different
communities. We assume C(i) = 1, 1 ≤ i ≤ ν1n, and C(i) = 2,
ν1n + 1 ≤ i ≤ n.

The SBM(n, ν1, ν2, ps, pd) randomly generates an undirected
graph G = (V, E,A): for i ̸= j, {i, j} ∈ E with probability ps if
C(i) = C(j) and with probability pd if C(i) ̸= C(j), independently of
other edges. Here A = [aij] is the adjacency matrix. The graph G
efines a gossip model with the interaction matrix W̃ = A/α and
=

∑n
i=1

∑n
j=i+1 aij = |E|. The inequality ∥W̃ − E{A}/E{α}∥ ≤

C/n holds with a constant C , except for a probability vanishing
s n → ∞, if log n/n = O(min{ps, pd}) (see Xing et al., 2021).

This result implies that, if the network of the gossip model is
generated from the SBM, then the interaction probability matrix
is close to E{A}/E{α} when n is large. Note that E{A}/E{α} has
exactly the same structure as W in (5) with nk = νkn, k = 1, 2,
ws = ps/E{α}, and wd = pd/E{α}. Fig. 1(b) demonstrates this
oncentration phenomenon with an obvious two-block structure.
The concentration indicates that behavior of the gossip model

ver a graph generated from the SBM may not deviate too far
rom the gossip model over the averaged graph, when n is large.
ing and Johansson (2022) show that the expected stationary
tates of the two models are close, if log n/n = o(min{ps, pd}).
his result indicates that the gossip model over the averaged
raph can be considered as an approximation of the model over
he SBM, and results for the former model can be extended to the
atter model.

emark 1. A general assumption for community labels in the
BM is that each agent gets a label k with probability νk inde-
endently of each other, k = 1, 2. This is essentially equivalent
o the label assignment with deterministic node portions when
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→ ∞ (Remark 3 of Abbe, 2017). Note that it is possible to
xtend the fixed-label assumption considered in Example 1 to
he deterministic-portion assumption, by conditioning on each
ssignment and using the law of total probability. The condition
og n/n = O(min{ps, pd}) implies that the expected agent degree
is at least O(log n). In this case, the SBM generates connected
graphs with high probability. The difference between ps and pd
as to be large enough to make exact recovery possible (Abbe,
017). Here we consider the dynamics over the averaged graph,
o the detectability only requires ws ̸= wd (Assumption 1 (ii)).
uture work will study detectability in the SBM case.

.3. Community recovery and interaction estimation

The considered problem is to recover the community struc-
ure and to estimate the interaction probabilities based on state
bservations, as follows.

roblem. Given a trajectory of the gossip model with the in-
eraction matrix (5), develop an algorithm to jointly recover the
ommunity structure C and estimate the interaction probabilities
s and wd.

emark 2. In the problem, we assume that the developed algo-
ithm uses data coming from the gossip model over the averaged
raph. A natural question is how this algorithm performs if it
ses a trajectory of the gossip model over a graph sampled from
n SBM. In Section 6, we illustrate through simulation that the
lgorithm performs well also in the SBM case. Such performance
s guaranteed by that these two processes behave similarly in
erms of their stationary states, as explained in Example 1. We use
‘community recovery’’ instead of ‘‘community detection’’ to avoid
mbiguity, following the terminology of Berthet et al. (2019),
ecause here agent behavior depends directly on the community
tructure.

Recall V1 = {1, . . . , n1} and V2 = {n1 + 1, . . . , n1 + n2}.
e further sort the agents as follows: Vr1 = {1, . . . , nr1}, Vs1 =

nr1+1, . . . , n1}, Vr2 = {n1+1, . . . , n1+nr2}, and Vs2 = {n1+nr2+

, . . . , n}. Here, Vrk (resp. Vsk) is the set of regular (resp. stubborn)
gents in the community k, k = 1, 2. Denote nrk := |Vrk|, nsk :=

Vsk|, nr := |Vr |, and ns := |Vs|. In the considered problem, the
otal number of agents is known in advance, the network has two
ommunities, and the stubborn-agent states are observable. But
ifficulty still remains since nk, nrk, nsk, k = 1, 2, and interaction
nformation are unknown. The interaction information cannot be
btained in general situations (e.g., agent states are only observed
t some time steps, or observations are corrupted by noise, as
iscussed in Remark 7).

. Model analysis

This section studies model behavior, and provides an explicit
xpression for the mean of the stationary distribution. Assump-
ions are summarized as follows.

ssumption 1.
(i.1) The agent set V consists of two communities, V1 = {1, . . . , n1

nd V2 = {n1 + 1, . . . , n1 + n2} with n1, n2 > 0 and n1 + n2 = n.
(i.2) Both communities have regular agents, namely, 1 ≤ nr1 ≤

1, 1 ≤ nr2 ≤ n2.
(ii) The interaction probability matrix W has a block structure (5)

ith ws, wd > 0, ws ̸= wd, and

n1(n1 − 1) + n2(n2 − 1))ws + 2n1n2wd = 2. (6)

(iii) X(0) is deterministic. It holds that X r (0) ∈ S with
r nr r , s], 1 ≤ i ≤ n }, (7)
:= {x ∈ R : xi ∈ [s r

4

where s := min1≤i≤ns{xsi }, s := max1≤i≤ns{xsi }, x
s

:= X s(0) =

(xs1)T (xs2)T ]T is the stubborn state vector, and xsk is the vector for
he community k, k = 1, 2.

emark 3. In Assumption 1 (i.1), the order of agents is sorted for
onvenience, but we do not know to which group each agent be-
ongs, before community recovery. It is necessary to assume ws ̸=

d. Otherwise, W has no block structure. Regular agents are as-
sumed to start from S , which is reasonable and intuitively means
that regular states lie between the extreme stubborn states.

Before studying model behavior, we explicitly write the block
structures of Ā := E{A(t)} and B̄ := E{B(t)} as follows. The block
structure of W results in similar updates of agents in the same
community.

Proposition 1. Suppose Assumption 1 holds. Then Ā and B̄ have the
following block structures:

Ā = Inr − (1 − q)
[
a1Inr1 − ws1nr1,nr1 −wd1nr1,nr2

−wd1nr2,nr1 a2Inr2 − ws1nr2,nr2

]
,

B̄ = (1 − q)
[
ws1nr1,ns1 wd1nr1,ns2
wd1nr2,ns1 ws1nr2,ns2

]
,

(8)

where ak = wsnk + wdn3−k, k = 1, 2.

Now we provide the stability and limit theorems of the gossip
model.

Theorem 1 (Stability and Limit Theorems). Suppose that Assump-
tion 1 holds and there exists at least one stubborn agent in the
network (i.e., nr < n). The following results hold for the gossip model
with stubborn agents.

(i) The model has a unique stationary distribution π with mean
xr , and X r (t) converges in distribution to π .

(ii) The expectation of the state vector converges to xr :

xr = lim
t→∞

E{X r (t)} = (I − Ā)−1B̄xs. (9)

(iii) Denote Sr (t) :=
1
t

∑t−1
i=0 X r (i), then

lim
t→∞

Sr (t) = xr a.s. (10)

emark 4. The first two results show that the agent states,
although may not converge a.s., converge in distribution to a
unique stationary distribution, and their expectations converge to
the mean of the stationary distribution. The third result indicates
that we can obtain the value of xr by computing the state time
average.

The next proposition shows that xr also has a block structure,
ndicating that regular agents in the same community behave
imilarly on average.

roposition 2. Under the conditions of Theorem 1, xr given in (9)
has the form

xr = [χ11T
nr1 , χ21T

nr2 ]
T , (11)

where χk = (γkk1T
nskx

sk
+ γk,3−k1T

ns,3−k
xs,3−k)/δ, δ = w2

s ns1ns2 +

wswd(n1ns1+n2ns2)+w2
d(n1n2−nr1nr2), γkk = w2

s ns,3−k+wswdnk+
2
dnr,3−k, γk,3−k = wd (wsn3−k +wdnk), and 1T

nskx
sk

:= 0 if nsk = 0,
= 1, 2.

emark 5. Appendix B of Xing et al. (2021) studies a multiple-
ommunity case, generalizing Proposition 2.
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The above proposition means that regular agents in the same
community have the same limit, which is a weighted average of
stubborn states. Hence it is possible to split regular agents by
computing the state time average. However, we are unable to do
so if only one community has stubborn agents, or the stubborn
states are similar. The following condition rules out these cases.

Assumption 2. Both communities have stubborn agents
(i.e., ns1ns2 > 0), and xs = [(xs1)T (xs2)T ]T satisfies that
1T
ns1x

s1/ns1 ̸= 1T
ns2x

s2/ns2.

This assumption has a practical meaning: stubborn agents
are distributed among communities, and agents from different
communities are more likely to have distinct opinions. Under
Assumption 2, we have the following result, indicating that the
presence of stubborn agents enhances the separation of regular
agents.

Proposition 3. Under the conditions of Theorem 1, χ1 ̸= χ2 if and
only if Assumption 2 holds.

This result shows that Assumption 2 is a necessary and suf-
ficient condition for regular agents from different communi-
ties having nonidentical expected stationary states. Note that
1T
ns1x

s1/ns1 ̸= 1T
ns2x

s2/ns2 is generic (i.e., it holds for almost all
xs ∈ Rns ).

4. Joint recovery and estimation algorithm

In this section, we design a joint recovery and estimation
algorithm (Algorithm 1) to address the considered problem. We
assume the following connections between stubborn and regu-
lar agents. The information means that we have prior knowl-
edge about stubborn agents, which may be gathered from other
sources in practice.

Assumption 3. For every stubborn agent i ∈ Vs, it is known for
lgorithm 1 that there exists a regular agent ji ∈ Vr such that i and

ji are in the same community (i.e, C(i) = C(ji)).

Now we are ready to introduce Algorithm 1, where we denote
the estimates at time t of community label C(i), interaction prob-
abilities ws and wd, by Ĉ(i, t), ŵs(t), and ŵd(t), respectively. We
use Sri (t) to represent the (i− n1 + nr1)-th entry of Sr (t), i ∈ V2 =

{n1 +1, . . . , n1 +nr2} for simplicity. Note that both n1 and nr1 are
unknown in the algorithm. In the gossip model, agents randomly
interact and update states. Algorithm 1 partitions the agents and
estimates interaction strength, out of these state observations,
without interaction information.

Remark 6. The difficulty of recovery is to find a quantity revealing
the community structure. Algorithm 1 exploits the trajectory data
by using Sr (t). From Proposition 2 we know that the entries
of Sr (t) converge to two distinct values corresponding to the
communities. Hence clustering methods (Line 4 of Algorithm 1,
or other methods such as k-means) can be used. For estimation
of interaction probabilities, the key is to find consistent parameter
equations. Here we use the stationary property xr = Āxr + B̄xs,
giving the following equations of [x y]T (see Xing et al. (2021) for
the details){
(ns1χ1 − 1T

ns1x
s1)x + (n2χ1 − nr2χ2 − 1T

ns2x
s2)y = 0,

(n1(n1 − 1) + n2(n2 − 1))x + 2n1n2y = 2.

From (9), the system of equations has a unique solution under
Assumptions 1 and 2, for fixed nk, nrk, and nsk. But these quantities
are unknown, so we leverage SA techniques to estimate them, as
presented in Line 5 of Algorithm 1. Note that the algorithm does
not need to know the averaging weight q.
5

Algorithm 1 (Joint Recovery and Estimation)
Input: {X r (t), t = 0, 1, 2, . . . }, X s(0), step-size parameter a of the
interaction estimator with a > 0.
Output: {Ĉ(i, t)}, ŵs(t), ŵd(t).
1: Randomize Ĉ(i, 0), ŵs(0), ŵd(0), set Sr (0) = X r (0).
2: for t = 1, . . . do
3: Compute

Sr (t) =
t

t + 1
Sr (t − 1) +

1
t + 1

X r (t),

s̄r (t) =
1
nr

1T
nr S

r (t).

4: Community recovery:

Ĉ(i, t) = 2 − I[Sri (t)>s̄r (t)], i ∈ Vr ,

Ĉ(i, t) = Ĉ(ji, t), i ∈ Vs,

where ji is defined in Assumption 3.
5: Interaction estimation:

ŵs(t) = ŵs(t − 1) −
a
t
sgn(g(t))

(
g(t)ŵs(t − 1) +

h2(t)
n̂1(t)n̂2(t)

)
,

ŵd(t) =
2 − ŵs(t)(n̂2

1(t) + n̂2
2(t) − n̂1(t) − n̂2(t))

2n̂1(t)n̂2(t)
,

where

g(t) = h1(t) −
n̂2
1(t) + n̂2

2(t) − n̂1(t) − n̂2(t)
2n̂1(t)n̂2(t)

h2(t),

h1(t) =
|V̂s1(t)|
|V̂r1(t)|

∑
i∈V̂r1(t)

Sri (t) −
∑

i∈V̂s1(t)
X s
i (0),

h2(t) =
n̂2(t)

|V̂r1(t)|

∑
i∈V̂r1(t)

Sri (t) −
∑

i∈V̂r2(t)
Sri (t) −

∑
i∈V̂s2(t)

X s
i (0),

n̂k(t) =
∑

i∈V I[Ĉ(i,t)=k],

V̂rk(t) = {i ∈ Vr : Ĉ(i, t) = k},

V̂sk(t) = {i ∈ Vs : Ĉ(i, t) = k}, k = 1, 2.

6: end for

5. Convergence analysis

This section studies the performance of Algorithm 1. The fol-
lowing result means that communities can be recovered in finite
time, and the interaction probability estimates are convergent.

Theorem 2 (Convergence of Algorithm 1).
Under Assumptions 1–3, the following holds.
(i) The community recovery is achieved in finite time: there exists

a positive integer-valued random variable T such that Ĉ(i, t) = C(i),
or all i ∈ V and t > T .

(ii) The interaction estimator converges a.s., namely,

P
{
lim
t→∞

(ŵs(t), ŵd(t)) = (ws, wd)
}

= 1.

emark 7. Since Algorithm 1 uses the property (10), it can also
eal with situations where state observations are corrupted. For
xample, one cannot observe the entire trajectory but can only
ample states at some time steps. Ergodic property ensures that
he time average of the sampled states still converges, if the
ampling process is independent of the update and the number of
amples tends to infinity (Ravazzi, Frasca, Tempo, & Ishii, 2014;
ai et al., 2016). Another situation is that the observations are
isturbed by i.i.d. zero-mean noise. The law of large numbers
uarantees that the influence of noise vanishes over time.

Now we investigate the sample complexity of the community
ecovery, and the convergence rate of the interaction estimator.
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he following result is useful for studying the sample complexity
f the recovery.

emma 1. Consider a Markov chain {X(t)} taking values on a
compact state space X and having a unique stationary distribution
π . For a function f : X → R and α :=

∫
X f (x)π (dx), denote

g(x) :=
∑

∞

t=0 E{f (X(t)) − α|X(0) = x}, and the supremum of |g|

on X by ∥g∥s := sup{|g(x)| : x ∈ X }. If ∥g∥s < ∞, then, for all
ε > 0 and t > 2∥g∥s/ε, it holds for Sf (t) :=

1
t

∑t−1
i=0 f (X(i)) that

{|Sf (t) − α| ≥ ε} ≤ 2 exp
{
−

(tε − 2∥g∥s)2

2t∥g∥2
s

}
.

emark 8. Similar concentration results to Lemma 1 have been
obtained in the literature for other models. One class of results
leverage Markov chain approaches and normally require stability
such as uniform ergodicity (Glynn & Ormoneit, 2002; Paulin,
2015) or explicit bounds of the derivative of the initial measure
with respect to the stationary measure (Fan, Jiang, & Sun, 2021).
It is hard to derive these properties for Markov chains without
continuous distributions (Gibbs & Su, 2002), as in our case. An-
other line of research studies concentration of Polyak averages,
and contains step-size conditions (Mou, Li, Wainwright, Bartlett,
& Jordan, 2020), which cannot be applied to our problem either.

Using the preceding lemma, we are able to compute when
he differences between entries of Sr (t) and xr are small enough,
such that agents in different communities have distinct state time
averages. As a result, we obtain a sample-complexity result for
the community recovery. The next theorem shows that the prob-
ability of recovering communities successfully depends on the
network, the interaction probabilities, and the stubborn states.
The probability tends to one as t goes to infinity.

Theorem 3 (Sample Complexity).
Under the conditions of Theorem 2, for the community recovery

step of Algorithm 1, it holds that, for t > t0,

P
{
Ĉ(i, t) = C(i), ∀i ∈ V

}
≥ 1 − 2nr exp

{
−2(t − t0)2

t20 t

}
,

ith t0 = 4δcĀcnr cs/cw , where cĀ = 1/(1−ρ(Ā)), cnr = n3/2
r (nr+1),

s = max{|s|, |s̄|}/|ns11T
ns2x

s2
− ns21T

ns1x
s1
|, cw = |w2

s − w2
d |, δ is

given in Proposition 2, and s and s̄ are given in (7).

emark 9. This result provides a sample complexity charac-
terization for recovering community from a single trajectory.
Multiple-trajectory sample complexity is investigated by Rodden-
berry et al. (2020), Schaub et al. (2020) and Wai et al. (2019).
The parameter δ reflects the combined effect of the cardinality of
stubborn and regular agents and the interaction probabilities. cĀ
aptures the ‘‘speed’’ of information diffusion, and increases with
¯
(A). cnr depends on the number of regular agents. cs increases d

6

ith the range of the states and decreases with the difference
f averaged stubborn states in different communities, and cw
easures the difference between interaction probabilities within
nd between communities. Smaller δ, cĀ, nr , and max{|s|, |s̄|}

would make the recovery easier, and so would larger cw and
|ns11T

ns2x
s2

− ns21T
ns1x

s1
|. For the gossip model over an SBM, Exam-

ple 1 indicates that the algorithm can recover most community
labels, which is illustrated in Section 6.

We have the following result for the convergence rate of the
interaction estimator. It shows that the rate also depends on the
model parameters, and a large enough step-size a ensures that
the rate can achieve O(1/

√
t).

Theorem 4 (Convergence Rate).
Under the conditions of Theorem 2, it holds for d0 ∈ [0,min{1/2,

a|η|}) that

[ŵs(t) − ws, ŵd(t) − wd]
T

= o(t−d0 ), a.s.,

where a > 0 is the step-size parameter given in Algorithm 1, η =

(wsn2 + wdn1)(ns11T
ns2x

s2
− ns21T

ns1x
s1)/(δn1n2), and δ is given in

Proposition 2.

Remark 10. In the theorem, η increases with the combined ef-
fect of the number of agents and the interaction probabilities
(i.e., (wsn2 + wdn1)/δ) and with the disagreement of stubborn
agents, and decreases with the cardinality of each community.
When a ≥ 1/(2|η|), the estimator achieves its optimal rate. Larger
η provides a wider selection range. Simulation in Section 6 shows
that the algorithm using a trajectory from the gossip model over
an SBM can estimate the ratio of the link probabilities.

6. Numerical simulation

This section illustrates the performance of Algorithm 1, con-
ducts an algorithm comparison, and applies Algorithm 1 to the
SBM case and a real network.

To illustrate the performance of Algorithm 1 under Assump-
tions 1–3, consider a network consisting of twelve agents. The
two communities both have five regular agents and one stub-
born agent. Set interaction probabilities be ws = 5/186 and
wd = 1/186. The stubborn agent in community 1 (resp. commu-
ity 2) has state 1 (resp. −1). The initial states of regular agents
re drawn from uniform distribution on (−1, 1). The averaging

weight is set to be q = 1/2 in all experiments. Fig. 2(a) shows that
Algorithm 1 recovers the communities in finite time, where the
accuracy at time t is defined by 1

n (maxσ∈S2{
∑n

i=1 I[σ (Ĉ(i,t))=C(i)]}) ∈

0, 1]. Here σ : {1, 2} → {1, 2} is a permutation function
to prevent a reverse distribution of labels), S2 is the group of
ermutations on {1, 2}, C(i) is agent i’s community label, Ĉ(i, t) is
he estimate of agent i’s label at time t , and n = 12. Consistency
f the interaction estimator with step-size parameter a = 1 is
emonstrated in Fig. 2(b). These results validate Theorem 2.
Fig. 2. Performance of Algorithm 1.
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Fig. 3. Performance comparison of four methods.

We now show the sample complexity of the community re-
covery (Theorem 3) and compare the recovery step with the
k-means, k-means++ (Arthur & Vassilvitskii, 2006), and spectral
lustering methods (Abbe, 2017). This experiment considers the
ossip model under Assumptions 1–3 with n = 400, n1 =

50, and ns1 = ns2 = 8. Let ws/wd = 5 and solve the
wo parameters from (6). Let stubborn agents in community 1
resp. community 2) have state 1 (resp. −1), and generate the
nitial states of other agents from uniform distribution on (−1, 1).
y running the algorithms for 200 times, we obtain the rela-
ive frequency that the algorithms recover all community labels,
efined by pt := (

∑N
k=1 maxσ∈S2{I[σ (Ĉk(i,t))=C(i),∀i∈V]})/N , where

N = 200 and Ĉk(i, t) is the estimate of agent i’s label at time
t in the kth run. After computing the time average Sr (t), we
se k-means and k-means++ with k = 2 instead of Line 4 of
lgorithm 1, to recover communities. To implement the spectral
lustering method, assume that edge activation is known, and use
he activation information to estimate the interaction probability
atrix W . Applying spectral clustering to estimates of W obtains
ommunity estimates.
Fig. 3 shows that the probabilities of unsuccessful community

ecovery of all approaches tends to zero exponentially over time.
he spectral clustering method performs better than other algo-
ithms, because it directly uses interaction information, but the
equired time is still of the same order as the other algorithms.
he k-means and k-means++ methods perform similarly to each
ther, and also similarly to Algorithm 1. This observation indi-
ates that the major challenge of the problem is how to use agent
tates to recover communities without topological information.
7

We now consider the case where trajectories of the gossip
model over graphs sampled from SBMs are given to Algorithm 1.
We use three SBMs with size n = 100, 300, 900 and with two
equal-sized communities (ν1 = ν2 = 0.5). Set nr1 = nr2 = 0.45n,
and ns1 = ns2 = 0.05n. Let the link probability in the same
community be ps = (log n)2/n and the link probability between
different communities be pd = (log n)/n. For each SBM, we gener-
ate 20 graph samples. For each graph sample, we run Algorithm 1
for 20 times. Regular states are generated the same as earlier and
stubborn agents in community 1 (resp. community 2) have state 1
(resp. −1). Fig. 4(a) shows that Algorithm 1 has high community
recovery accuracy, increasing with n. This phenomenon results
from the concentration discussed in Example 1. Algorithm 1
outputs ŵs(t) and ŵd(t) as estimates of the two distinct non-
zero values of E{W}/E{α}. Note that [cps, cpd] defines the same
E{W}/E{α} for all c > 0, so we can only estimate the ratio
ps/pd without knowing the expected number of edges of the
SBM. Fig. 4(b) shows that the median of the estimation error for
trajectory samples from each SBM is close to zero and decreases
with n.

Zachary’s karate club network (Zachary, 1977), presented in
Fig. 5(a), is used to demonstrate an application of Algorithm 1. An
edge represents frequent interaction between the two agents. The
strength of interactions between agents is modeled by a weighted
adjacency matrix . A conflict between agents 1 and 34 results in
a fission of the club. In the experiment, we assume that only the
opinions can be observed, instead of interactions between agents.
The process is modeled by the gossip model. Agents 1 and 34 are
set to be stubborn agents holding different opinions. In addition,
one edge in Fig. 5(a) is selected at each time with a probability
proportional to interaction strength given in Zachary (1977). The
goal is to partition the agents into communities based on only
state observations. The network structure departures from our
assumptions, but the result shown in Fig. 5(b) indicates that our
algorithm can finally recover the community structure as time
increases, without topological and interaction information.

7. Conclusion and future work

In this paper, we developed a joint algorithm to recover the
community structure and to estimate the interaction probabilities
for gossip opinion dynamics. It was proved that the community
recovery is achieved in finite time, and the interaction estimator
converges almost surely. We analyzed the sample complexity of
the recovery and the convergence rate of the estimator. Future
work includes to study the case where all regular agents have
the same stationary expectation, and to analyze the community

detection problem for dynamics over the SBM.
Fig. 4. Performance of Algorithm 1 using trajectories of the gossip model over sampled graphs from SBMs with n = 100, 300, 900.
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