
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. © 2022 Society for Industrial and Applied Mathematics
Vol. 60, No. 2, pp. 992--1017

EVENT-TRIGGERED DISTRIBUTED ESTIMATION WITH
DECAYING COMMUNICATION RATE\ast 

XINGKANG HE\dagger , YU XING\ddagger , JUNFENG WU\S , AND KARL H. JOHANSSON\dagger 

Abstract. We study distributed estimation of a high-dimensional static parameter vector
through a group of sensors whose communication network is modeled by a fixed directed graph. Dif-
ferent from existing time-triggered communication schemes, an event-triggered asynchronous scheme
is investigated in order to reduce communication while preserving estimation convergence. A dis-
tributed estimation algorithm with a single step size is first proposed based on an event-triggered
communication scheme with a time-dependent decaying threshold. With the event-triggered scheme,
each sensor sends its estimate to neighbor sensors only when the difference between the current
estimate and the last sent-out estimate is larger than the triggering threshold. Different sensors
can have different step sizes and triggering thresholds, enabling the parameter estimation process
to be conducted in a fully distributed way. We prove that the proposed algorithm has mean-square
and almost-sure convergence, respectively, under an integrated condition of sensor network topology
and sensor measurement matrices. The condition is satisfied if the topology is a balanced digraph
containing a spanning tree and the system is collectively observable. The collective observability
is the possibly mildest condition, since it is a spatially and temporally collective condition of all
sensors and allows sensor measurement matrices to be time-varying, stochastic, and nonstationary.
Moreover, we provide estimates for the convergence rates, which are related to the step size as well
as the triggering threshold. Furthermore, as an essential metric of sensor communication intensity in
the event-triggered distributed algorithms, the communication rate is proved to decay to zero with
a certain speed almost surely as time goes to infinity. In addition, we show that it is feasible to tune
the threshold and the step size such that requirements of algorithm convergence and communication
rate decay are satisfied simultaneously. We also show that given the step size, adjusting the decay
speed of the triggering threshold can lead to a tradeoff between the convergence rate of the estimation
error and the decay speed of the communication rate. Specifically, increasing the decay speed of the
threshold would make the communication rate decay faster but reduce the convergence rate of the
estimation error. Numerical simulations are provided to illustrate the developed results.

Key words. distributed estimation, sensor network, event-triggered communications, commu-
nication rate
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1. Introduction. Networked systems monitoring complex environments gener-
ate a tremendous amount of data, which can be used in the estimation of system
states or unknown parameters. Parameter estimation is one of the most important
tools in control theory, signal processing, and machine learning with extensive appli-
cations in sensor networks, weather prediction, cyber-physical systems, environmental
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monitoring, transportation, etc. The development of computational and energy ef-
ficient algorithms, which are able to handle imperfect data from sensor networks, is
drawing more and more attention.

1.1. Motivation and challenges. To estimate a high-dimensional parameter
vector (such as temperature over a large environment) is usually infeasible by a local
algorithm for each sensor only with local measurements. Thus, it is necessary to
design a collaborative estimation algorithm for sensors to obtain accurate estimates
of the parameter. Centralized and distributed architectures are the two dominating
approaches to sensor network estimation. In centralized architecture, a data center
runs estimation algorithms based on all sensor data in order to estimate a state or
system parameter. In this way, optimality in certain sense can be ensured, such
as the Kalman filter achieving the minimum variance unbiased estimate for linear
dynamical systems under Gaussian noise. However, with large-scale deployment of
sensors, centralized architecture is no longer efficient. Therefore, we need to develop
effective and efficient distributed estimation algorithms based on local sensor data
and local sensor communication.

In distributed parameter estimation, messages shared between sensors play im-
portant roles. Since sensor measurements only contain partial parameter information,
it is not sufficient to design a global parameter estimation algorithm only by com-
municating sensor measurements. Quite a few distributed estimators are proposed
by requiring that sensors send their estimates to neighbor sensors at every time in-
stant of measurement sampling. Diffusion-based distributed estimators are proposed
in [4] and [5] by solving least-squares and least-mean squares problems over net-
works. In [33], a distributed estimator based on sensor beliefs is proposed over a
strongly connected communication network. In [21], a gossip distributed estimator
is proposed to handle random failures of network links. The results are extended in
[24] to nonlinear systems under imperfect communication channels and extended to
more general system models and communication networks in [23], where an adap-
tive learning method is proposed in order to achieve asymptotic efficiency. A robust
distributed parameter estimator is given in [38] for systems with Markovian switch-
ing networks and uncertain measurement models. However, since the above refer-
ences require that each sensor communicates with its neighbors persistently, there
will be severe energy consumption and serious channel congestion if the measure-
ment sampling rate is high or the parameter is high-dimensional. Under constrained
communication resources, although the above algorithms can still work by requiring
that sensors communicate periodically, their estimation performance could be much
degraded.

Therefore, it is vital to develop a performance-guaranteed distributed estimation
algorithm based on an effective and efficient sensor communication mechanism. Nev-
ertheless, there are two challenges. First, for potentially time-varying, stochastic,
and nonstationary sensor measurement models with weak observability (e.g., collec-
tive observability), how to guarantee the performance of the distributed algorithm
under limited communications is challenging. Second, under the influence of noisy
measurements, how to quantify the communication frequency of sensors is difficult.

1.2. Related work. To mitigate the issue of sensor communications, there are
some approaches, including data quantization, compressed sensing, adaptive sam-
pling, and event-triggered communications. In the following discussion, we focus our
attention on adaptive sampling and event-triggered communications, since they can
make better use of posterior information compared to the former two approaches.
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994 X. HE, Y. XING, J. WU, AND K. H. JOHANSSON

In parameter estimation under constraint on the total sensing effort, adaptive
sampling helps improve performance by strategically allocating sensing effort in fu-
ture data collection based on the information extracted from data collected previously.
In [17], a sequential adaptive sampling-and-refinement procedure called distilled sens-
ing is proposed to detect and estimate parameters. The reference [3] investigates how
to estimate the support set of a sparse parameter by making full use of structural
information. For a class of physically constrained sensing models, the limitations
and advantages of adaptive sampling are analyzed in [10], and it is shown that a con-
strained adaptive sampling method can substantially improve estimation performance.
Moreover, the adaptive sampling problem for a class of continuous-time Markov state
processes is studied in [32]. The above and related literature require either struc-
tural information or prior distribution of parameters, which is difficult to satisfy in
monitoring complex environments. In addition, many methods in the literature are
introduced in centralized architecture. It is difficult to extend these methods to dis-
tributed architecture with large-scale sensor networks and high-dimensional system
parameters.

In contrast, an event-triggered scheme is suitable to distributed architecture un-
der constrained communication resource, since it can efficiently determine when a
sensor should share data to other sensors without prior knowledge of parameter struc-
ture. In such a way, event-triggered sensor communications are usually asynchronous
and aperiodic and, thus different from traditional time-triggered communications. A
number of centralized estimators with event-triggered measurement schedulers are
proposed in the literature, such as [34, 36] for state estimation of dynamical systems
and [11, 16, 37] for static parameter estimation. Regarding event-triggered parameter
estimation, the authors in [37] propose a measurement scheduler such that the as-
ymptotic estimation performance is optimized. A stochastic measurement scheduler
is studied in [16] to compensate for the loss of the Gaussianity of the system, which
ensures the maximum-likelihood parameter estimator. An event-triggered scheduler
for finite impulse response systems with binary measurements is proposed in [11],
where communication rate is analyzed. The above centralized event-triggered mea-
surement schedulers are usually not suitable to the distributed architecture, because
scheduling local measurements between neighboring sensors is insufficient to design
a global parameter estimator when each sensor can only observe partial elements of
the parameter vector. In the distributed architecture for event-triggered estimation,
there are several methods for dynamical systems. For example, an approach based on
linear matrix inequality is studied in [29] for the cooperative estimation and control
of a dynamical system under an event-triggered communication protocol. An event-
triggered distributed Kalman filter is proposed in [1] and proved to be stable in terms
of meanssquare boundedness of the estimation error in each sensor. For linear dynam-
ical systems under state equality constraints, an event-triggered projected distributed
Kalman filter is studied in [18] with guaranteed estimation error stability under col-
lective system observability. For more related works on event-triggered distributed
estimation for dynamical systems, we refer readers to [12] and the references therein.
Another related topic is event-triggered distributed optimization, which concerns the
distributed design of optimization algorithms such that the global optimal solution is
reached by each computational node. In this direction, most algorithms are proposed
in noise-free or disturbance-free settings and analyzed to show the influence of event-
triggered mechanisms on algorithm convergence [2, 26]. An event-triggered property
for continuous-time systems, which is called Zeno behavior (i.e., an infinite number
of events occur in a finite amount of time), is also of interest in some papers [8].
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However, there are few event-triggered distributed optimization or estimation algo-
rithms handling imperfect data from stochastic environments. In addition, the above
studies analyze the influence of event-triggered threshold to estimation performance,
but the tradeoff between communication frequency and estimation performance is not
well established in the distributed architecture. To the best of our knowledge, there
is no result of distributed parameter estimation on communication rate, which is an
essential metric of sensor network communication level.

1.3. Contributions. In this paper, we study the event-triggered distributed
parameter estimation problem for the sake of reducing sensor communication while
preserving convergence of estimators. The main contributions are summarized in the
following:

1. We propose a recursive event-triggered distributed parameter algorithm with a
single step size (Algorithm 3.1) for a group of sensors with noisy measurements. The
algorithm has several advantages: First, it is fully distributed in the sense that each
sensor only relies on the local information and has its own step size and triggering
threshold. Second, without requiring exact noise distribution or statistics, the event-
triggered scheme enables sensors to communicate in an efficient way such that each
sensor sends its estimate to neighboring sensors only when the difference between the
current estimate and the last sent-out estimate is larger than the triggering threshold.
Third, the algorithm is scalable to large-scale sensor networks, since its update is
independent of the network size.

2. We prove that the proposed algorithm with a properly designed step size and
triggering threshold achieves mean-square convergence (Theorem 3.6). In addition, we
provide the estimate for the convergence rate and establish its connection to network
structure and system observability. The results are obtained under an integrated
condition of sensor network topology and sensor measurement matrices. The condition
is satisfied if the topology is a balanced digraph containing a spanning tree and the
system is collectively observable. The collective observability is the possibly mildest
condition, since it allows each sensor to observe partial elements of the parameter,
sensor measurement matrices to be time-varying, stochastic, and nonstationary, and
noise processes to be martingale difference sequences. Under some extra conditions on
step size and triggering threshold, we prove the algorithm's output is asymptotically
convergent to the true parameter almost surely (a.s.) with an estimated convergence
rate (Theorem 3.8).

3. We prove that the communication rate is decaying to zero a.s. as time goes
to infinity (Theorem 3.12) with a quantified speed. Moreover, we show that it is
feasible to tune the threshold and the step size such that the requirements of the al-
gorithm convergence and the communication rate decay are satisfied simultaneously.
We also show that given the step size, adjusting the decay speed of the triggering
threshold can lead to a tradeoff between the convergence rate of the estimation error
and the decay speed of the communication rate. Specifically, increasing the decay
speed of the threshold would make the communication rate decay faster but reduce
the convergence rate of the estimation error. To the best of our knowledge, this is the
first result on communication rate in the direction of event-triggered distributed algo-
rithms for estimating static parameters or solutions [2, 8]. Our result indicates that
while ensuring successful parameter estimation, the algorithm enables the alleviation
of channel burden and resource consumption in sensor communication compared to
existing time-triggered approaches [5, 21, 23, 25, 33, 35, 38] which require a persistent
positive communication rate.
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The results of this paper are significantly different from the literature. Regarding
the step size, we remove the requirement that all sensors share the same setting [9, 19,
21, 23--25, 35, 38], as well as the requirements of the concrete forms [9, 19, 21, 23--25]
and the monotonicity in [35]. The stationarity condition of measurement matrices in
[38] is removed. Since sensor measurements and measurement matrices are not shared
between neighbors, our algorithm can be more suitable to scenarios with a privacy
requirement than the diffusion estimators in [4, 6]. Moreover, we generalize sensor
communication topologies from undirected graphs [19, 21, 23, 24] to a class of directed
graphs, such as balanced digraphs containing a spanning tree.

1.4. Paper organization. In section 2, we formulate the considered problem of
event-triggered distributed parameter estimation and introduce some graph prelimi-
naries, the communication model, and the mathematical model of sensors. In order
to solve this problem, in section 3 an event-triggered distributed estimation algo-
rithm is proposed and analyzed in terms of estimation error convergence (mean-square
and almost-sure convergence) and communication rate. For reading convenience, the
proofs for the results in section 3 are provided in section 4. Numerical simulations in
two examples are provided in section 5 to illustrate the developed results. Section 6
concludes the paper.

Notations. Denote \BbbR n\times m the set of real-valued matrices with n rows and m
columns, with \BbbR n = \BbbR n\times 1 and \BbbR 1 = \BbbR . Let \BbbR + and \BbbN + be the sets of positive
real-valued scalars and integers, respectively, with \BbbN = \BbbN + \cup \{ 0\} . Denote \Omega and
\emptyset the universal set and empty set, respectively. In stands for the n-dimensional
square identity matrix. 1n stands for the n-dimensional vector with all elements being
one. The superscript ``\sansT "" represents the transpose. \BbbE \{ x\} denotes the mathematical
expectation of the random variable x, and blockdiag\{ \cdot \} represents the diagonalizations
of block elements. A\otimes B is the Kronecker product of A and B. \| x\| is the 2-norm of a
vector x, and \| A\| is the induced norm, i.e., \| A\| = sup\| x\| =1 \| Ax\| , where A \in \BbbR n\times m,
x \in \BbbR m. The mentioned scalars, vectors, and matrices of this paper are all real-
valued. Let \sigma (\cdot ) be the \sigma -algebra operator which generates the smallest \sigma -algebra.
For a real-valued matrix or vector sequence \{ a(t)\} and a real number sequence \{ b(t)\} ,
the operator a(t) = O(b(t)) means that there is a constant c \geq 0 such that for each
element sequence of \{ ai(t)\} , limt\rightarrow \infty | ai(t)/b(t)| \leq c, and the operator a(t) = o(b(t))
means limt\rightarrow \infty | ai(t)/b(t)| = 0.

2. Preliminaries and problem formulation. In this section, we formulate
the problem of event-triggered distributed parameter estimation and introduce some
graph preliminaries, the communication model, and the mathematical model of
sensors.

2.1. Graph preliminaries. In this paper, the communication between N sen-
sors of a network is modeled as a digraph \scrG = (\scrV , \scrE ,\scrA ), where \scrV = \{ 1, 2, . . . , N\} is
the node set and \scrE \subseteq \scrV \times \scrV is the edge set. A directed edge (i, j) \in \scrE if and only
if there is a communication link from j to i, where j is called the parent node and i
is called the child node. The matrix \scrA = [ai,j ]

N
i,j=1 is the weighted adjacency matrix

with ai,j \geq 0, where ai,j > 0, if (i, j) \in \scrE . The parent neighbor set and child neighbor

set of node i are denoted by \{ j \in \scrV | (i, j) \in \scrE \} \triangleq \scrN i and \{ j \in \scrV | (j, i) \in \scrE \} \triangleq \scrN c
i ,

respectively. Suppose that the graph has no self loop, which means ai,i = 0 for

any i \in \scrV . \scrG is called a balanced digraph if
\sum N

j=1 ai,j =
\sum N

i=1 aj,i for all i \in \scrV .
\scrG is called an undirected graph if \scrA is symmetric. The Laplacian matrix of \scrG is
denoted by \scrL = \scrD  - \scrA , where \scrD = diag\{ 

\sum N
j=1 a1,j , . . . ,

\sum N
j=1 aN,j\} . The mirror
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graph of the digraph \scrG is an undirected graph, denoted by \=\scrG = (\scrV , \scrE \=\scrG ,\scrA \=\scrG ) with
\scrA \=\scrG = [\=ai,j ]

N
i,j=1, \=ai,j = \=aj,i = (ai,j + aj,i)/2 [30]. \scrG is called strongly connected if for

any pair nodes (i1, il), l > 1, there exists a path from il to i1 consisting of edges in
the set \{ (im, im+1) \in \scrE | m = 1, 2, . . . , l  - 1\} . We call \scrG is connected if it is strongly
connected and undirected. A directed tree is a digraph, where each node except the
root has exactly one parent node. A spanning tree of \scrG is a directed tree whose node
set is \scrV and whose edge set is a subset of \scrE .

2.2. Problem setup. Consider an unknown high-dimensional parameter vector
\theta \in \BbbR M observed by N > 0 sensors with the following model:

(2.1) yi(t) = Hi(t)\theta + vi(t), i = 1, 2, . . . , N,

where yi(t) \in \BbbR mi is the measurement vector, vi(t) \in \BbbR mi is the measurement noise,
and Hi(t) \in \BbbR mi\times M represents the known measurement matrix of sensor i, all at
time t.

The communication rate is an essential metric of communication intensity in the
event-triggered distributed algorithms. Its mathematical definition over the digraph
\scrG is in the following.

Definition 2.1. For the digraph \scrG , in a given time interval [0, t]\cap \BbbN , the com - 
munication rate \lambda c(t) is given by

\lambda c(t) =

\sum 
i\in \scrV Ki(t)| \scrN c

i | 
t
\sum 

i\in \scrV | \scrN c
i | 

,(2.2)

where Ki(t) is the accumulated triggering (data-sending) times of node i in [0, t] \cap \BbbN 
and | \scrN c

i | is the child neighbor number of node i.

According to this definition, \lambda c(t) \in [0, 1]. When \lambda c(t) \equiv 1, communication
occurs all the time, which is the case for the time-triggered distributed estimation
algorithms [5, 21, 23, 33, 35, 38]. When \lambda c(t) \equiv 0, there is no sensor communication
over the network.

The problem considered in this paper is how to design a distributed estimation
algorithm with an event-triggered communication scheme and find conditions such
that the output of the algorithm is asymptotically convergent to the parameter vec-
tor with a convergence rate while the communication rate of the sensor network is
decaying to zero as time goes to infinity.

3. Main results. The formulated problem is solved in this section. First, an
event-triggered distributed algorithm is proposed to estimate the parameter. Then,
the mean-square and almost-sure convergence of the algorithm are studied. Addi-
tionally, the decay speed of the communication rate is analyzed. The proofs of these
results are provided in section 4.

3.1. Event-triggered distributed estimation. To solve the problem posed
in section 2, we propose the event-triggered distributed estimation algorithm in Algo-
rithm 3.1 for each sensor i \in \scrV , where the initial estimate xi(0) = xi,0 \in \BbbR M is fixed.
The time complexity of Algorithm 3.1 is O(n2mi + n| \scrN i| ). An example of Algorithm
3.1 for a sensor network with 7 nodes is provided in Figure 1.

Remark 3.1. We have a few remarks on Algorithm 3.1.
1. The notation xi(t) denotes the estimate of \theta by sensor i at time t. The notation

\tau ki(t) denotes the time of ki(t)th triggering instant until time t. The amount
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Algorithm 3.1 Event-Triggered Distributed Estimation

1: Input: xi(0), \{ yi(t)\} t\geq 0, \{ Hi(t)\} t\geq 0, \{ \alpha i(t)\} t\geq 0, \{ fi(t)\} t\geq 0.

2: Output: \{ xi(t)\} t\geq 0.

3: for t = 0, 1, . . . do
4: // Data transmission

5: if t = 0 then
6: Send xi(0) to each child neighbor sensor j \in \scrN c

i , and let xi(\tau 0) = xi(0) and
ki(0) = 1.

7: else if \| xi(t) - xi(\tau ki(t - 1))\| > fi(t) then
8: Send xi(t) to each child neighbor sensor j \in \scrN c

i , and let ki(t) = ki(t - 1) + 1
and \tau ki(t) := t.

9: else
10: ki(t) = ki(t - 1).
11: end if

12: // Data receiving

13: for j \in \scrN i do
14: if Receive estimate xj(t) from parent neighbor sensor j \in \scrN i then
15: Let kj(t) = kj(t - 1) + 1 and \tau kj(t) := t.
16: else
17: kj(t) = kj(t - 1).
18: end if
19: end for

20: // Estimate update

xi(t+ 1) =xi(t) + \alpha i(t)H
\sansT 
i (t)(yi(t) - Hi(t)xi(t))

+ \alpha i(t)
\sum 
j\in \scrN i

ai,j(xj(\tau kj(t)) - xi(t)).
(3.1)

21: end for

1 2

3 4 5

6 7

2

1 1 11

3 1

2
2

1
1

(a) Communication topology of a sensor
network with 7 nodes.

E \Sigma 
xiyi

. . .

xj \in \scrN i

\sigma > 0

(b) The schematic of Algorithm 3.1 for sen-
sor i.

Fig. 1. An example of Algorithm 3.1 for a sensor network with 7 nodes. The communication
of sensors forms a weighted balanced digraph with a spanning tree, as shown in (a) where the
numbers on edges stand for weights. The schematic of Algorithm 3.1 for sensor i \in \{ 1, 2, . . . , 7\} 
is shown in (b), consisting of a parameter estimator E and a communication scheduler \Sigma . The
estimator has inputs of local measurement yi and parent neighbor estimates xj \in \scrN i. The scheduler
\Sigma sends estimate xi to child neighbor nodes when the event is triggered, i.e., \sigma > 0, where \sigma :=
\| xi(t) - xi(\tau ki(t - 1))\|  - fi(t).
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of ki(t) shows how many events have been triggered for sensor i until time t.
The scalar \alpha i(t) is the step size of sensor i at time t, and the scalar fi(t) \geq 0,
i \in \scrV , is the event-triggered threshold of sensor i at time t. Both \{ \alpha i(t)\} t\geq 0

and \{ fi(t)\} t\geq 0 are to be designed.
2. The event-triggered scheme \| xi(t)  - xi(\tau ki(t - 1))\| > fi(t) is to determine

whether the estimate xi(t) is worth sharing with child nodes by compar-
ing it with the last sent-out estimate xi(\tau ki(t - 1)). Since the estimate xi(t)
provides the global parameter information, in weak observability conditions
the scheme outweighs the existing event-triggered schemes transmitting local
measurements [11, 16, 37]. Moreover, compared to the existing schemes
[16, 34, 36, 37], the proposed scheme is built on a more general stochastic
framework without requiring knowledge of accurate noise distribution or sta-
tistics.

3. To ensure the convergence of Algorithm 3.1, the triggering threshold fi(t)
should decay to zero fast enough, as required in Assumption 3.1. However, to
avoid sensors communicating frequently all the time, fi(t) should not decay
too fast, as required in Assumption 3.2. Remark 3.11 will show that it is
feasible to satisfy the assumptions on fi(t) simultaneously. Moreover, as
shown in Remark 3.13, the decay speed of fi(t) can lead to a tradeoff between
the decaying speed of the communication rate and the convergence rate of
the estimation error.

4. Regarding the time instants \{ \tau ki(t)\} , it holds that \tau ki(t) = inft>\tau ki(t - 1)
t if

\| xi(t)  - xi(\tau ki(t - 1))\| > fi(t) otherwise \tau ki(t) = \tau ki(t - 1). Thus, \{ \tau ki(t)\} is
determined only by past and current information.

Remark 3.2. We have a few remarks on the advantages of Algorithm 3.1 in com-
parison to existing algorithms.

1. An advantage of Algorithm 3.1 compared to the diffusion estimation algo-
rithms in [4, 6] is that Algorithm 3.1 does not require the local measurements
and measurement matrices to be shared between sensors. Thus, Algorithm
3.1 is more suitable to scenarios with a privacy requirement and limited com-
munication bandwidth.

2. Algorithm 3.1 does not require any global knowledge of the system and thus
is fully distributed. For example, it removes the requirement in [19, 21, 23,
24, 35, 38] that all sensors share the same step size. Moreover, Algorithm 3.1
is able to handle open sensor networks where some sensors may break down
or new sensors are plugged in, which however is intractable for the algorithms
[21] requiring the total sensor number and the measurement matrices of all
sensors.

3. Since Algorithm 3.1 can tremendously reduce the redundant transmissions of
estimates, it can require less communication than the existing time-triggered
distributed algorithms [5, 22, 23, 35, 38] for convergence.

To ease notation, we write \tau ki(t) as \tau ik in the below text, i.e., \tau ik := \tau ki(t). The
subscript k of \tau ik is kept to emphasize the number of triggering times, but the reader
should keep in mind that k in \tau ik depends on time t and sensor i. With this definition,
xi(\tau 

i
k) := xi(\tau ki(t)). Then we rewrite (3.1) in the following way:

xi(t+ 1) =xi(t) + \alpha i(t)H
\sansT 
i (t)(yi(t) - Hi(t)xi(t))(3.2)

+ \alpha i(t)
\sum 
j\in \scrN i

ai,j(xj(t) - xi(t)) + \alpha i(t)
\sum 
j\in \scrN i

ai,j(xj(\tau 
j
k) - xj(t)).
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3.2. Convergence and convergence rate. In order to ensure that Algorithm
3.1 in the previous subsection provides accurate parameter estimates, in this subsec-
tion we find conditions such that the output of Algorithm 3.1, i.e., xi(t), is asymptot-
ically convergent to \theta with an estimated convergence rate. To proceed, we introduce
the following notations:

\=\alpha (t) = blockdiag \{ \alpha 1(t)IM , . . . , \alpha N (t)IM\} ,
\=DH(t) = blockdiag

\bigl\{ 
H\sansT 

1 (t), . . . ,H
\sansT 
N (t)

\bigr\} 
,

\tau k =
\bigl[ 
\tau 1k , . . . , \tau 

N
k

\bigr] \sansT 
, fmax(t) = max

i\in \scrV 
fi(t), fmin(t) = min

i\in \scrV 
fi(t),

V (t) = [v\sansT 1 (t), . . . , v
\sansT 
N (t)]\sansT , X(t) =

\bigl[ 
x\sansT 
1 (t), . . . , x

\sansT 
N (t)

\bigr] \sansT 
,

X(\tau k) =
\bigl[ 
x\sansT 
1 (\tau 

1
k ), . . . , x

\sansT 
N (\tau Nk )

\bigr] \sansT 
, Y (t) =

\bigl[ 
y\sansT 1 (t), . . . , y

\sansT 
N (t)

\bigr] \sansT 
.

(3.3)

Given the notations in (3.3), the compact form of (3.2) is given in the following:

(3.4)
X(t+ 1) =X(t) - \=\alpha (t)(\scrL \otimes IM )X(t) + \=\alpha (t) \=DH(t)(Y (t) - \=D\sansT 

H(t)X(t))

+ \=\alpha (t)(\scrA \otimes IM )(X(\tau k) - X(t)).

In the basic probability space (\Omega ,\scrF , P ), define the filtration \scrF (t) := \sigma ( \=DH(s), V (s),
0 \leq s \leq t), t \geq 0, and \scrF ( - 1) := \{ \emptyset ,\Omega \} . With the notations in (3.3), the following
assumption is needed in this paper.

Assumption 3.1.
(i.a) There exists a sequence \{ \alpha (t)\} such that \alpha i(t)/\alpha (t) \rightarrow 1 as t \rightarrow \infty for all

1 \leq i \leq N . In addition, \alpha (t) > 0, \alpha (t) \rightarrow 0,
\sum \infty 

t=1 \alpha (t) = \infty , and

1

\alpha (t+ 1)
 - 1

\alpha (t)
\rightarrow \alpha 0 \geq 0.

(i.b)
\sum \infty 

t=1 \alpha (t)
2(1 - \delta ) < \infty for some \delta \in [0, 1/2).

(ii.a) The two sequences \{ \=DH(t)\} and \{ V (t)\} introduced in (3.3) are independent.
(ii.b) \{ V (t)\} is a martingale difference sequence, and there is a scalar \rho > 2 such

that
sup
t\in \BbbN 

\BbbE \{ \| V (t)\| \rho | \scrF (t - 1)\} := cV < \infty , a.s.

(ii.c) supt\in \BbbN \| \=DH(t)\| 2 \leq D < \infty a.s. for some positive constant D, and there
exist h \in \BbbN +, \lambda \in \BbbR + such that for any m \in \BbbN and some \delta \in [0, 1/2),

\lambda min

\left[  (m+1)h - 1\sum 
t=mh

\BbbE 
\bigl\{ 
\=\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t)| \scrF (mh - 1)
\bigr\} \right]  \geq \lambda + h\alpha 0\delta , a.s.,(3.5)

where \=\scrL = (\scrL + \scrL \sansT )/2.
(iii.a) fmax(t)/\alpha 

\delta (t) \rightarrow 0, t \rightarrow \infty , for some \delta \in [0, 1/2).
(iii.b)

\sum \infty 
t=1((\alpha (t))

1 - \delta fmax(t)) < \infty , for some \delta \in [0, 1/2).

Remark 3.3. Some remarks on Assumption 3.1 are given:
\bullet In (i.a), \alpha (t) provides a reference rate of step sizes. It is necessary that
step sizes of sensors are in the same order. If there exist i and j such that
\alpha i(t)/\alpha j(t) \rightarrow 0, then the information provided by sensor i vanishes in terms
of \alpha j(t). The requirements in (i.a) and (i.b) for choosing the step size \alpha (t)
are quite general, where \alpha (t) = a/(t + 1) for some a > 0 in [24] is a special
case.
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\bullet In (ii.c), (3.5) indicates network connectivity and system observability. Note
that the eigenvalue on the left-hand side of (3.5) is nonnegative. It is positive
under proper conditions of network connectivity and system observability,
such as in Proposition 3.4. In order to ensure a certain convergence rate of
Algorithm 3.1, the eigenvalue has to be large enough. If the step size is slowly
decreasing such that \alpha 0 = 0, then the second term on the right-hand side of
(3.5) is zero. In other cases, since \alpha 0 depends only on the step size, one can
design the latter so that \alpha 0 is small enough and (3.5) holds.

\bullet Condition (iii.a) requires decaying thresholds \{ fi(t)\} to ensure that the esti-
mates can still be shared over an infinite horizon. Otherwise, in a convergent
algorithm (its output may not converge to \theta ), since the difference between
two adjacent estimates is decreasing to zero, the events would no longer be
triggered after some finite time.

\bullet Condition (iii.b) is required for almost-sure convergence of the algorithm,
meaning that the triggering thresholds have to decrease fast enough to ensure
certain convergence rate of the algorithm.

The following proposition shows that the integrated condition (3.5) in Assump-
tion 3.1 is satisfied under certain network connectivity and system observability.

Proposition 3.4. Suppose that \scrG is a balanced digraph containing a spanning
tree and that there exist h \in \BbbN + and \~\lambda \in \BbbR + such that for any m \in \BbbN ,

\lambda min

\left[  N\sum 
j=1

(m+1)h - 1\sum 
t=mh

\BbbE 

\Biggl\{ 
H\sansT 

j (t)Hj(t)

\bigm| \bigm| \bigm| \bigm| \bigm| \scrF (mh - 1)

\Biggr\} \right]  \geq \~\lambda , a.s.;(3.6)

then for any m \in \BbbN ,

\lambda min

\left[  (m+1)h - 1\sum 
t=mh

\BbbE 
\bigl\{ 
\=\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t)| \scrF (mh - 1)
\bigr\} \right]  \geq \beta , a.s.,

where \beta = min\{ h\lambda 2( \=\scrL ), \~\lambda /N\} > 0.

Proof. Since \scrG is a balanced digraph, according to [30, Theorem 7], \=\scrL = (\scrL T +
\scrL )/2 is the Laplacian matrix of the undirected mirror graph \=\scrG , i.e., \scrL \=\scrG = \=\scrL . Then
by [28, Theorem 2.8], \=\scrL has a unique eigenvalue zero, and \lambda 2( \=\scrL ) > 0. Hence for a
vector x \in \BbbR NM such that x\sansT ( \=\scrL \otimes IM )x = 0, it must have the form 1N \otimes z, z \in \BbbR M .
For another vector x, which does not have this form, we know that x\sansT ( \=\scrL \otimes IM )x \geq 
\lambda 2( \=\scrL )\| x\bot \| 2 > 0, where x\bot is the difference of x minus its projection on the subspace
\{ 1N \otimes z : z \in \BbbR M\} . Now for vector x = 1N \otimes z, z \in \BbbR M ,

x\sansT 

\left(  (m+1)h - 1\sum 
t=mh

\BbbE \{ \=DH(t) \=D\sansT 
H(t)| \scrF (mh - 1)\} 

\right)  x

=

(m+1)h - 1\sum 
t=mh

\BbbE 

\left\{   
N\sum 
j=1

z\sansT H\sansT 
j (t)Hj(t)z| \scrF (mh - 1)

\right\}   
= z\sansT 

\left(  (m+1)h - 1\sum 
t=mh

\BbbE 

\left\{   
N\sum 
j=1

H\sansT 
j (t)Hj(t)| \scrF (mh - 1)

\right\}   
\right)  z \geq \~\lambda \| z\| 2,

where the last inequality follows from (3.6).
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Consider the orthogonal decomposition of an arbitrary unit vector x = x\bot +1N\otimes z,
z \in \BbbR M . Then it holds that \| x\| 2 = \| x\bot \| 2+N \| z\| 2 . It follows from the above analysis
that

x\sansT 

\left(  (m+1)h - 1\sum 
t=mh

\BbbE 
\bigl\{ 
\=\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t)| \scrF (mh - 1)
\bigr\} \right)  x

\geq h\lambda 2( \=\scrL )\| x\bot \| 2 + \~\lambda \| z\| 2 (a)
= h\lambda 2( \=\scrL ) + (\~\lambda  - Nh\lambda 2( \=\scrL ))\| z\| 2

(b)

\geq min\{ h\lambda 2( \=\scrL ), \~\lambda /N\} = \beta ,

where (a) follows from \| x\| 2 = \| x\bot \| 2 +N \| z\| 2 = 1, and (b) is due to \| z\| 2 \in [0, 1/N ].
Since x is an arbitrary unit vector, the conclusion holds.

Remark 3.5. The observability condition (or persistent excitation condition) in
(3.6) is the possibly mildest, since it is a spatially and temporally collective condition
of all sensors and allows the measurement matrices to be time-varying, stochastic,
and nonstationary. Similar conditions are given in [15] and [35] under centralized and
distributed settings, respectively. In the literature, time-invariant measurement matri-
ces and stationary measurement matrices are studied in [21, 23] and [38], respectively.
Under the conditions in Proposition 3.4, (3.5) is fulfilled if \beta = min\{ h\lambda 2( \=\scrL ), \~\lambda /N\} \geq 
q\lambda + h\alpha 0\delta .

Theorem 3.6 (mean-square convergence). Under Assumption 3.1(i.a), (ii), and
(iii.a), the estimation error, e0(t) = X(t) - 1N \otimes \theta , converges to zero in mean square
with a rate o(\alpha 2\delta (t)), i.e.,

lim
t\rightarrow \infty 

\BbbE \{ \| e0(t)\| 2\} 
\alpha 2\delta (t)

= 0,(3.7)

where \delta \in [0, 1/2) satisfies Assumption 3.1(ii.c) and (iii.a).

Proof. See section 4.2.

Remark 3.7. Under the conditions of Theorem 3.6, a larger \lambda in (3.5) leads to
a larger \delta meaning a faster convergence rate. From Proposition 3.4, the value of
\lambda is determined by the network structure \scrL and the level of system observability\sum (m+1)h - 1

t=mh \BbbE \{ \=DH(t) \=D\sansT 
H(t)| \scrF (mh - 1)\} . Thus, in order to obtain a faster convergence

rate, the system designer can offline adjust the system and network structure, such
as choosing sensors with larger signal-to-noise ratio, new sensor deployment, etc.
Moreover, if we increase the decay speed of triggering threshold fi(t), then according
to (iii) of Assumption 3.1, a larger \delta will be available such that the convergence rate
of the estimation error increases.

In order to analyze the decay speed of the communication rate over the whole
sensor network in section 3.3, we need to establish the almost-sure convergence of
Algorithm 3.1. As is known, there is a gap between the almost-sure and mean-
square convergence of a random variable sequence unless the uniform integrability
and certain moment conditions are satisfied [31]. For example, if

\sum \infty 
t=0 \BbbE \{ \| e0(t)\| 2\} <

\infty is satisfied, almost-sure convergence will hold according to Theorem 6.8 in [31].
Although we provide the mean-square convergence rate in Theorem 3.6 with o(\alpha 2\delta (t)),
the condition

\sum \infty 
t=0 \BbbE \{ \| e0(t)\| 2\} < \infty is not directly satisfied due to \delta \in [0, 1/2). In

the following theorem, we show that if some slightly stronger conditions on the step
size and the triggering threshold are satisfied, Algorithm 3.1 will have almost-sure
convergence with a certain convergence rate.
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Theorem 3.8 (almost-sure convergence). Under Assumption 3.1, the estimation
error, e0(t) = X(t) - 1N \otimes \theta , converges to zero a.s. with a rate o(\alpha \delta (t)), i.e.,

\BbbP 
\biggl\{ 

lim
t\rightarrow \infty 

e0(t)

\alpha \delta (t)
= 0

\biggr\} 
= 1,(3.8)

where \delta \in [0, 1
2 ) satisfies Assumption 3.1 (i.b), (ii.c), and (iii).

Proof. See section 4.3.

Remark 3.9. Theorems 3.6 and 3.8 show that the mean-square and almost-sure
convergence rates of Algorithm 3.1 are o(\alpha 2\delta (t)) and o(\alpha \delta (t)), respectively. Since
\delta \in [0, 1/2), the conclusions in Theorems 3.6 and 3.8 reduce to the mean-square and
almost-sure convergence [35, 38] when \delta = 0.

3.3. Communication rate. After studying the estimation performance of Al-
gorithm 3.1, in this subsection we find conditions such that the Communicatio rate
of sensors using the algorithm decays to zero with a certain speed while ensuring the
estimation error convergence. To proceed, we need some extra conditions on the step
size \alpha i(t) and the triggering threshold fi(t).

Assumption 3.2. There are two monotonically nonincreasing sequences, \{ \=f(t)\} \infty t=0

and \{ \beta (t)\} \infty t=0, and a scalar \mu \in [1/2, 1) such that the following hold:
(i) \=f(t) \leq fmin(t) for any t \in \BbbN .
(ii) lim inft\rightarrow \infty \=f(t+ t\mu )/ \=f(t) > 0.
(iii) \beta (t) = O(\alpha (t)1 - 2(1 - \delta )/\rho ), where \delta and \rho are given in Theorem 3.8 and Assump-
tion 3.1 (ii.b), respectively.

(iv) lim inft\rightarrow \infty 
\=f(t)

t\mu \beta (t) > 0.

Remark 3.10. In (i) and (iii) of Assumption 3.2, although monotonicity is required
for \=f(t) and \beta (t), triggering threshold fi(t) and step size \alpha i(t) are not necessarily
monotonic. Conditions (ii) and (iv) are satisfied if \=f(t) decays slowly, such as the case
in Remark 3.11. The parameter \mu can reflect the decay speed of \=f(t). One can find
a larger \mu if \=f(t) decays more slowly.

Remark 3.11. The requirements on the step size \alpha i(t) and the threshold fi(t)
in Assumptions 3.1 and 3.2 can be satisfied at the same time. For instance, let
\alpha (t) = \alpha i(t) = t - 1, \=f(t) = fi(t) = t - \epsilon 0 , and \beta (t) = t - 1+2/\rho . Then the require-
ments are satisfied if 1  - \epsilon 0  - \mu  - 2/\rho > 0, \mu \in [1/2, 1), and \epsilon 0 > \delta \geq 0, where
\delta indicates the convergence rate of the estimation error according to Theorems 3.6
and 3.8. It is feasible to satisfy these conditions simultaneously if the parameter \rho in
Assumption 3.1(ii.b) is large enough.

Theorem 3.12 (communication rate decay). Under Assumptions 3.1 and 3.2,
the communication rate \lambda c(t) of Algorithm 3.1 converges to zero a.s. with a rate
o(t - \gamma ) for any \gamma \in [0, 2\mu 

2\mu +1 ), i.e.,

\BbbP 
\Bigl\{ 
lim
t\rightarrow \infty 

\lambda c(t)t
\gamma = 0

\Bigr\} 
= 1.(3.9)

Proof. See section 4.4.

Remark 3.13. (tradeoff). Given the step size \alpha i(t), if we reduce the decay speed
of the triggering threshold fi(t), we are able to obtain a larger parameter \mu according
to Remark 3.10. Then according to Theorem 3.12, the communication rate \lambda c(t) will
have a faster decay speed. However, the convergence rate of the estimation error
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will be reduced since \delta in Theorems 3.6 and 3.8 becomes smaller according to (iii)
of Assumption 3.1. Thus, the decay speed of the triggering threshold can lead to a
tradeoff between the convergence rate of the estimation error and the decay speed of
the communication rate. This tradeoff can be illustrated from the example discussed
in Remark 3.11: One can decrease \epsilon 0 to reduce the decay speed of fi(t) = t - \epsilon 0 ; then
a larger \mu is feasible from 1  - \epsilon 0  - \mu  - 2/\rho > 0 such that a faster decay speed of
the communication rate is available. However, it would lead to a smaller \delta due to
\epsilon 0 > \delta \geq 0, meaning the convergence rate of the estimation error is compromised.

4. Proofs of the main results. The proofs of the main results in the last
section are provided in this section.

4.1. Convergence of linear recursion. To show the convergence of Algo-
rithm 3.1, we first study the following linear recursion:

e(t+ 1) = e(t) + \alpha (t)(Q(t) + \Delta (t))e(t) + \alpha (t)(\varepsilon \prime (t) + \varepsilon \prime \prime (t)),(4.1)

where e(t), \varepsilon \prime (t), \varepsilon \prime \prime (t) \in \BbbR q, Q(t),\Delta (t) \in \BbbR q\times q, and \alpha (t) \in \BbbR is the step size, t \in \BbbN .
Some assumptions are introduced below.

Assumption 4.1.
(i) \{ \alpha (t)\} satisfies that \alpha (t) > 0, \alpha (t) \rightarrow 0,

\sum \infty 
t=1 \alpha (t) = \infty , and

(4.2)
1

\alpha (t+ 1)
 - 1

\alpha (t)
\rightarrow \alpha 0 \geq 0.

(ii.a) \{ Q(t), t \in \BbbN \} is a sequence of random matrices, and there exists a constant
\pi 1 \in \BbbR + such that

sup
t\in \BbbN 

\| Q(t)\| \leq \pi 1, a.s.(4.3)

In addition, there exist h \in \BbbN +, \lambda \in \BbbR + such that for any m \in \BbbN ,

\lambda max

\left[  (m+1)h - 1\sum 
t=mh

\BbbE 
\bigl\{ 
Q(t) +Q\sansT (t)| \scrF (mh - 1)

\bigr\} \right]  \leq  - \lambda , a.s.,(4.4)

where \scrF (t) := \sigma (Q(s),\Delta (s), \varepsilon \prime (s), 0 \leq s \leq t), and \scrF ( - 1) = \{ \emptyset ,\Omega \} .
(ii.b) \{ \Delta (t), t \in \BbbN \} is a sequence of random matrices such that for t \in \BbbN 

\| \Delta (t)\| \leq g1(t), a.s.,

where g1(t) : \BbbR + \cup \{ 0\} \rightarrow \BbbR + is a measurable function satisfying g1(t) \rightarrow 0 as t \rightarrow \infty 
and supt\geq 0 g1(t) < \infty .
(iii.a) \{ \varepsilon \prime (t),\scrF (t)\} is a martingale difference sequence, i.e., \BbbE \{ \varepsilon \prime (t)| \scrF (t - 1)\} = 0 for
all t \in \BbbN , and supt\in \BbbN \BbbE \{ \| \alpha \delta (t)\varepsilon \prime (t)\| 2| \scrF (t  - 1)\} \leq c\varepsilon a.s. with c\varepsilon a positive constant
and some \delta \in [0, 1/2).
(iii.b) \varepsilon \prime \prime (t) \in \scrF (t), and \| \varepsilon \prime \prime (t)\| \leq g2(t) a.s., t \in \BbbN , where g2(t) : \BbbR + \cup \{ 0\} \rightarrow \BbbR + is a
measurable function satisfying g2(t) \rightarrow 0 as t \rightarrow \infty and supt\geq 0 g2(t) < \infty .

Remark 4.1. In the above assumption, the first three conditions of (i) are standard
for step sizes, and (4.2) is a mild condition used in the characterization of the conver-
gence rate of an algorithm [7]. The boundedness ofQ(t) in (4.3) is assumed for simplic-
ity but could be extended to uniform conditional boundedness with respect to \scrF (t - 1).
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Similarly, the dominance condition in (ii.b) could also be extended to certain condi-
tional dominance by g1(t) with respect to \scrF (t - 1). Condition (4.4) is a counterpart of
the persistent excitation condition for centralized algorithms [14]. (iii.a) is a common
noise assumption and guarantees that

\sum \infty 
t=1 \alpha (t)\varepsilon 

\prime (t) =
\sum \infty 

t=1 \alpha 
1 - \delta (t)(\alpha \delta (t)\varepsilon \prime (t)) < \infty 

a.s. when
\sum \infty 

t=1 \alpha 
2(1 - \delta )(t) < \infty . In addition, (iii.b) ensures \varepsilon \prime \prime (t) \rightarrow 0. These two

conditions,
\sum \infty 

t=1 \alpha (t)\varepsilon 
\prime (t) < \infty and \varepsilon \prime \prime (t) \rightarrow 0, are standard for almost-sure conver-

gence of stochastic approximation algorithms [7]. Extensions of (iii.a) and (iii.b) are
left to future work.

Theorem 4.2. Under Assumption 4.1, e(t) in (4.1), starting with any fixed initial
condition, converges in mean square, i.e.,

lim
t\rightarrow \infty 

\BbbE \{ \| e(t)\| 2\} = 0.

In addition, suppose that the conditions below hold:
(a)

\sum \infty 
t=1 \alpha (t)

2(1 - \delta ) < \infty , where \delta is defined in Assumption 4.1(iii.a),
(b)

\sum \infty 
t=1 \alpha (t)g2(t) < \infty ,

(c) \varepsilon \prime (t) can be written as \varepsilon \prime (t) = u(t)w(t), where u(t) \in \BbbR q\times q and w(t) \in \BbbR q such
that \{ w(t), t \in \BbbN \} is independent of \{ Q(t),\Delta (t), u(t), t \in \BbbN \} and \{ w(t),\scrF (t)\} is a
martingale difference sequence.
Then e(t) starting with any fixed initial condition converges to zero a.s., i.e.,

\BbbP 
\Bigl\{ 
lim
t\rightarrow \infty 

e(t) = 0
\Bigr\} 
= 1.

Remark 4.3. As mentioned in Remark 4.1, the additional condition (a) is to en-
sure

\sum \infty 
t=1 \alpha (t)\varepsilon 

\prime (t) < \infty a.s. Conditions (b) and (c) are introduced to deal with the
possible dependence of measurement noise, \epsilon \prime (t) and \epsilon \prime \prime (t), on Q(t) and \Delta (t). This
does not exist in classic linear recursion, where Q(t) and \Delta (t) are both deterministic
[7]. Possible extensions of these two conditions will be investigated in the future.

Proof sketch of Theorem 4.2. Due to space limitation, we provide a proof sketch
here. Readers can refer to [20] for details.

Denote \Phi (t, s) := (I+\alpha (t)(Q(t)+\Delta (t)))(I+\alpha (t - 1)(Q(t - 1)+\Delta (t - 1))) \cdot \cdot \cdot (I+
\alpha (s)(Q(s) + \Delta (s))), t \geq s \geq 0, and \Phi (t, s) = I, 0 \leq t < s.

To prove Theorem 4.2, we first show that under Assumption 4.1(i), (ii.a), and (ii.b),
there exists a positive integer \~m such that for t \geq \~mh and s \geq 0,

\BbbE 
\bigl\{ 
\Phi \sansT (t, s)\Phi (t, s)| \scrF (s - 1)

\bigr\} 
\leq c2 exp

\Biggl( 
 - c1

t\sum 
k=s

\alpha (k)

\Biggr) 
I, a.s.,(4.5)

where c1 and c2 are positive constants.
To verify this conclusion, one can first bound \Phi \sansT (t, s)\Phi (t, s) in one period of length

h, i.e., \Phi \sansT 
\bigl( 
(m+ 1)h - 1,mh

\bigr) 
\Phi 
\bigl( 
(m+ 1)h - 1,mh

\bigr) 
, m \in \BbbN , using Assumption 4.1(ii)

and the following facts from Assumption 4.1(i)

\alpha (t+ i)

\alpha (t+ j)
= 1 +O

\bigl( 
\alpha (t+ i)

\bigr) 
,(4.6)

\alpha (t+ i) - \alpha (t+ j) = o
\bigl( 
\alpha (t+ j)

\bigr) 
,(4.7)

where 0 \leq i \not = j \leq k and k \geq 1 is a fixed integer. Then utilizing (4.3) and Assump-
tion 4.1(i), one is able to generalize the exponential bound to the case where t is large
enough and 0 \leq s \leq t.
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From (4.1) and the definition of \Phi (t, s), write

e(t+ 1) = \Phi (t, 0)e(0) +

t\sum 
k=0

\alpha (k)\Phi (t, k + 1)(\varepsilon \prime (k) + \varepsilon \prime \prime (k)).

To prove the mean-square convergence, we split an upper bound of \BbbE \{ \| e(t + 1)\| 2\} 
into three parts:

\BbbE \{ \| e(t+ 1)\| 2\} 

\leq 3

\biggl( 
\BbbE \{ \| \Phi (t, 0)e(0)\| 2\} + \BbbE 

\left\{   
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

t\sum 
k=0

\alpha (k)\Phi (t, k + 1)\varepsilon \prime (k)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2
\right\}   

+ \BbbE 

\left\{   
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

t\sum 
k=0

\alpha (k)\Phi (t, k + 1)\varepsilon \prime \prime (k)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2
\right\}   
\biggr) 

:= 3((I) + (II) + (III)).

It follows from (4.5) and Assumption 4.1(i) that (I) \rightarrow 0 as t \rightarrow \infty . For (II), (4.5)
and Assumption 4.1(iii.a) yield that

(II) \leq c2c\varepsilon 

t\sum 
k=0

\alpha 2(1 - \delta )(k) exp

\Biggl( 
 - c1

t\sum 
i=k+1

\alpha (i)

\Biggr) 
,

where c2 and c\varepsilon are given in (4.5) and Assumption 4.1(iii.a), respectively. In fact,
using properties of \alpha (t) given in Assumption 4.1(i), one can show that the above
bound tends to zero as t \rightarrow \infty , implying (II) \rightarrow 0. Similarly, (III) \rightarrow 0 follows from
(4.5), Assumption 4.1(i), and Assumption 4.1(iii.b).

To show the almost-sure convergence of e(t), we first study the convergence of

sequence \{ \| e(mh)\| 2,m \in \BbbN \} . By expanding \BbbE 
\bigl\{ \bigm\| \bigm\| e\bigl( (m + 1)h

\bigr) \bigm\| \bigm\| 2\bigm| \bigm| \scrF (mh  - 1)
\bigr\} 

and
utilizing similar arguments as above, under the additional assumption (c), a bound
can be obtained as follows:

\BbbE \{ \| e((m+ 1)h)\| 2| \scrF (mh - 1)\} 

\leq \| e(mh)\| 2 + c3

\Biggl( 
(m+1)h - 1\sum 

k=mh

\alpha 2(1 - \delta )(k) +

(m+1)h - 1\sum 
k=mh

\alpha 2(k)g22(k)

+ (\| e(mh)\| + c4)

(m+1)h - 1\sum 
k=mh

\alpha (k)g2(k)

\Biggr) 
for large enough m, where c3 and c4 are positive constants. Since we have proved
that \BbbE \{ \| e(t)\| 2\} \rightarrow 0 as t \rightarrow \infty , \BbbE \{ \| e(mh)\| \} is bounded. Hence, under the additional
assumptions (a)--(b), Lemma 1.2.2 in [7] ensures that e(mh) converges a.s. as m \rightarrow \infty ,
implying that e(mh) \rightarrow 0 a.s.

Note that for m \geq 0 and 0 < s < h,

\| e(mh+ s)\| \leq \| \Phi (mh+ s - 1,mh)e(mh)\| +

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
mh+s - 1\sum 
k=mh

\alpha (k)\Phi (mh+ s, k + 1)\varepsilon \prime (k)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
mh+s - 1\sum 
k=mh

\alpha (k)\Phi (mh+ s, k + 1)\varepsilon \prime \prime (k)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| .
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From Assumption 4.1(iii.a), the additional assumption (a), and the Borel--Cantelli
lemma, one can show that \alpha (k)\| \varepsilon \prime (k)\| \rightarrow 0. Therefore, the right side of the above in-
equality converges to zero a.s. for fixed s as m \rightarrow \infty , from e(mh) \rightarrow 0, \alpha (k)\| \varepsilon \prime (k)\| \rightarrow 
0, and Assumption 4.1(ii.a) and (iii.b). This implies e(t) \rightarrow 0 a.s.

4.2. Proof of Theorem 3.6. From (3.4) and \scrL 1N = 0N , the estimation error
e0(t) = X(t) - 1N \otimes \theta evolves as below;

e0(t+ 1) = e0(t) - \=\alpha (t)(\scrL \otimes IM + \=DH(t) \=D\sansT 
H(t))e0(t)

+ \=\alpha (t)
\bigl( 
\=DH(t)V (t) + (\scrA \otimes IM )(X(\tau k) - X(t))

\bigr) 
= e0(t) - \alpha (t)

\biggl( 
\=\alpha (t)

\alpha (t)

\biggr) 
(\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t))e0(t)

+ \alpha (t)

\biggl( 
\=\alpha (t)

\alpha (t)

\biggr) \bigl( 
\=DH(t)V (t) + (\scrA \otimes IM )(X(\tau k) - X(t))

\bigr) 
= e0(t) - \alpha (t)(IMN + o(1))(\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t))e0(t)

+ \alpha (t)(IMN + o(1))
\bigl( 
\=DH(t)V (t) + (\scrA \otimes IM )(X(\tau k) - X(t))

\bigr) 
,

where o(1) is a deterministic infinitesimal.
Let e(t) = e0(t)/\alpha 

\delta (t), \delta \in [0, 1/2), so

e(t+ 1)

=

\biggl( 
\alpha (t)

\alpha (t+ 1)

\biggr) \delta 
e0(t+ 1)

\alpha \delta (t)

=

\biggl( 
\alpha (t)

\alpha (t+ 1)

\biggr) \delta 
1

\alpha \delta (t)

\Bigl( \bigl( 
IMN

 - \alpha (t)(IMN + o(1))(\scrL \otimes IM + \=DH(t) \=D\sansT 
H(t))

\bigr) 
e0(t)

+ \alpha (t)(IMN + o(1))
\bigl( 
\=DH(t)V (t) + (\scrA \otimes IM )(X(\tau k) - X(t))

\bigr) \Bigr) 
=

\biggl( 
\alpha (t)

\alpha (t+ 1)

\biggr) \delta \biggl( \bigl( 
IMN

 - \alpha (t)(IMN + o(1))(\scrL \otimes IM + \=DH(t) \=D\sansT 
H(t))

\bigr) 
e(t)

+ \alpha (t)(IMN + o(1))

\biggl( \=DH(t)V (t)

\alpha \delta (t)
+ (\scrA \otimes IM )

X(\tau k) - X(t)

\alpha \delta (t)

\biggr) \biggr) 
=

\Biggl( 
1 + \delta 

\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)
+O

\Biggl( \biggl( 
\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)

\biggr) 2
\Biggr) \Biggr) 

(4.8) \biggl( \bigl( 
IMN  - \alpha (t)(IMN + o(1))(\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t))
\bigr) 
e(t)

+ \alpha (t)(IMN + o(1))

\biggl( \=DH(t)V (t)

\alpha \delta (t)
+ (\scrA \otimes IM )

X(\tau k) - X(t)

\alpha \delta (t)

\biggr) \biggr) 
=

\Biggl( 
1 + \delta 

\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)
+O

\Biggl( \biggl( 
\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)

\biggr) 2
\Biggr) \Biggr) 

(4.9) \bigl( 
IMN  - \alpha (t)(IMN + o(1))(\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t))
\bigr) 
e(t)

+
\bigl( 
1 +O(\alpha (t))

\bigr) 
\alpha (t)(IMN + o(1))
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\alpha \delta (t)
+ (\scrA \otimes IM )

X(\tau k) - X(t)

\alpha \delta (t)

\biggr) 
=

\Biggl\{ 
IMN + \alpha (t)\biggl[ 
 - (IMN + o(1))(\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t)) + \delta 
\alpha (t) - \alpha (t+ 1)

\alpha (t)\alpha (t+ 1)
IMN

 - \delta 
\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)
(IMN + o(1))(\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t))

+O

\Biggl( \biggl( 
\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)

\biggr) 2
\Biggr) \biggl( 

1

\alpha (t)
IMN

 - (IMN + o(1))(\scrL \otimes IM + \=DH(t) \=D\sansT 
H(t))

\biggr) \biggr] \Biggr\} 
e(t)

+ \alpha (t)
\bigl( 
1 +O(\alpha (t))

\bigr) 
(IMN + o(1))\biggl( \=DH(t)V (t)

\alpha \delta (t)
+ (\scrA \otimes IM )

X(\tau k) - X(t)

\alpha \delta (t)

\biggr) 
,

where (4.8) follows from Taylor's expansion and (4.6), and (4.9) is from (4.7).
Now let

Q(t) =  - (\scrL \otimes IM + \=DH(t) \=D\sansT 
H(t)) + \alpha 0\delta IMN ,

\Delta (t) = o(1)(\scrL \otimes IM + \=DH(t) \=D\sansT 
H(t)) + \delta 

\biggl( 
\alpha (t) - \alpha (t+ 1)

\alpha (t)\alpha (t+ 1)
 - \alpha 0

\biggr) 
IMN

 - \delta 
\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)
(IMN + o(1))

\bigl( 
\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t)
\bigr) 

+O

\Biggl( \biggl( 
\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)

\biggr) 2
\Biggr) \biggl( 

1

\alpha (t)
IMN

 - (IMN + o(1))(\scrL \otimes IM + \=DH(t) \=D\sansT 
H(t))

\biggr) 
,

\varepsilon \prime (t) =
\bigl( 
1 +O(\alpha (t))

\bigr) 
(IMN + o(1))

\=DH(t)V (t)

\alpha \delta (t)
,

\varepsilon \prime \prime (t) =
\bigl( 
1 +O(\alpha (t))

\bigr) 
(IMN + o(1))(\scrA \otimes IM )

X(\tau k) - X(t)

\alpha \delta (t)
,

and we can write e0(t)/\alpha 
\delta (t) in the form (4.1). Note that Assumption 3.1(i.a) is

identical to Assumption 4.1(i). Since

Q(t) +Q\sansT (t) =  - (\scrL + \scrL \sansT )\otimes IM  - 2 \=DH(t) \=D\sansT 
H(t) + 2\alpha 0\delta IMN ,

Assumption 4.1(ii.a) holds under Assumption 3.1(ii.c).
From (4.7), it holds that

\Delta (t) = o(1)(\scrL \otimes IM + \=DH(t) \=D\sansT 
H(t)) + \delta 

\biggl( 
\alpha (t) - \alpha (t+ 1)

\alpha (t)\alpha (t+ 1)
 - \alpha 0

\biggr) 
IMN

 - \delta 
\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)
(IMN + o(1))

\bigl( 
\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t)
\bigr) 
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+O

\biggl( 
\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)

\biggr) 
IMN

 - O

\Biggl( \biggl( 
\alpha (t) - \alpha (t+ 1)

\alpha (t+ 1)

\biggr) 2
\Biggr) 
(IMN + o(1))

\bigl( 
\scrL \otimes IM + \=DH(t) \=D\sansT 

H(t)
\bigr) 
,

so by supt\in \BbbN \| \=DH(t)\| 2 \leq D and Assumption 3.1(i.a) we know that \Delta (t) can be
bounded by a deterministic function that converges to zero as t \rightarrow \infty .

Assumption 3.1(ii.a) and (ii.b) ensure that \{ \varepsilon \prime (t),\scrF (t)\} is a martingale difference
sequence, and

\BbbE \{ \| \alpha \delta (t)\varepsilon \prime (t)\| 2| \scrF (t - 1)\} 

= \BbbE 
\bigl\{ \bigm\| \bigm\| \bigl( 1 +O(\alpha (t))

\bigr) 
(IMN + o(1)) \=DH(t)V (t)

\bigm\| \bigm\| 2\bigm| \bigm| \scrF (t - 1)
\bigr\} 

\leq c1\BbbE \{ \| \=DH(t)V (t)\| 2| \scrF (t - 1)\} 
\leq c1D\BbbE \{ \| V (t)\| 2| \scrF (t - 1)\} 

\leq c1D (\BbbE \{ \| V (t)\| \rho | \scrF (t - 1)\} )
2
\rho \leq c(cV )

2
\rho D,

where c1 is a positive constant, and the last inequality is obtained from conditional
Lyapunov inequality.

Finally, \| \varepsilon \prime \prime (t)\| \leq c2fmax(t)/\alpha 
\delta (t) \rightarrow 0 for some positive constant c2, from As-

sumption 3.1(iii.a). Therefore, Theorem 4.2 implies the conclusion.

4.3. Proof of Theorem 3.8. Following section 4.2, we only need to validate
the additional assumptions in Theorem 4.2. Note that

\sum \infty 
t=1 \alpha (t)

2(1 - \delta ) < \infty is given
in Assumption 3.1(i.b), and

\sum \infty 
t=1 \alpha (t)g2(t) < \infty holds from Assumption 3.1(iii.b),

by noticing g2(t) := c2fmax(t)/\alpha 
\delta (t). Finally, letting u(t) :=

\bigl( 
1 + O(\alpha (t))

\bigr) 
(IMN +

o(1)) \=DH(t)/\alpha \delta (t) and w(t) := V (t), we know that (c) holds under Assumption 3.1(ii.a)
and (ii.b).

4.4. Proof of Theorem 3.12. Recall that \tau ik := \tau ki(t) is the kth triggering
instant of sensor i \in \scrV in the time interval [0, t] \cap \BbbN . Denote the set \Gamma = \{ i \in 
\scrV | \tau ik \rightarrow \infty as t \rightarrow \infty \} , which is the set of sensors whose number of communications
goes to infinity as time goes to infinity. If \Gamma = \emptyset , then there are positive integers
n0 and N0 such that for t \geq n0, maxi\in \scrV supt \tau 

i
k \leq N0 surely. From the definition of

communication rate (2.2), for t \geq n0 and \gamma \in [0, 2\mu 
2\mu +1 ) for all \mu \in [1/2, 1), it holds

that

lim
t\rightarrow \infty 

\lambda c(t)t
\gamma \leq lim

t\rightarrow \infty 

N0

t1 - \gamma 
= 0.

In the case, the conclusion holds.
Next, we consider the case that \Gamma \not = \emptyset . According to (3.2), for any sensor i \in \Gamma 

and time t \geq \tau ik, we have

xi(t+ 1) - xi(\tau 
i
k)

=xi(t) - xi(\tau 
i
k) + \alpha i(t)

\sum 
j\in \scrN i

ai,j(xj(t) - xi(t))(4.10)

+ \alpha i(t)H
\sansT 
i (t)(yi(t) - Hi(t)xi(t)) + \alpha i(t)

\sum 
j\in \scrN i

ai,j(xj(\tau 
j
k) - xj(t)).

From Assumption 3.1(i.a), there is a constant c0 > 0 such that \alpha i(t) \leq c0\alpha (t). Taking
norm operator on both sides of (4.10) yields
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i
k)
\bigm\| \bigm\| 

\leq 
\bigm\| \bigm\| xi(t) - xi(\tau 

i
k)
\bigm\| \bigm\| + c0\alpha (t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
j\in \scrN i

ai,j(xj(t) - xi(t))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
+ c0\alpha (t)

\bigm\| \bigm\| H\sansT 
i (t)(yi(t) - Hi(t)xi(t))

\bigm\| \bigm\| + c0\alpha (t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
j\in \scrN i

ai,j(xj(\tau 
j
k) - xj(t))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
:=
\bigm\| \bigm\| xi(t) - xi(\tau 

i
k)
\bigm\| \bigm\| + (I) + (II) + (III).(4.11)

Consider (I) in (4.11). Denote d0 = maxi\in \scrV 
\sum 

j\in \scrN i
ai,j ; then we have

c0\alpha (t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
j\in \scrN i

ai,j(xj(t) - xi(t))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = c0\alpha (t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
j\in \scrN i

ai,j(xj(t) - \theta + \theta  - xi(t))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq 2d0c0\alpha (t)max

j\in \scrV 
\| xj(t) - \theta \| \leq \=c1\alpha (t)

1+\delta ,(4.12)

where \=c1 is a positive scalar, which could be different in different sample trajectories,
and the last inequality is obtained from Theorem 3.8.

Consider (II) in (4.11). For all \varepsilon 0 > 0, by (ii.b) of Assumption 3.1 and the
Markov inequality, we obtain

\infty \sum 
t=0

\BbbP \{ \alpha (t)
2(1 - \delta )

\rho \| V (t)\| \geq \varepsilon 0\} \leq 1

\varepsilon \rho 0

\infty \sum 
t=0

\alpha (t)2(1 - \delta )\BbbE \{ \| V (t)\| \rho \} 

\leq \=cV
\varepsilon \rho 0

\infty \sum 
t=0

\alpha (t)2(1 - \delta ) < \infty .

(4.13)

Hence by the Borel--Cantelli lemma, we have

lim
t\rightarrow \infty 

\alpha (t)
2(1 - \delta )

\rho \| vi(t)\| = 0, a.s.(4.14)

Under (ii.c) of Assumption 3.1, supt\geq 0

\bigm\| \bigm\| H\sansT 
i (t)

\bigm\| \bigm\| < \infty ; then from (4.14) and Theo-
rem 3.8, there are positive scalar \=c2, \=c3, which could be different in different sample
trajectories, such that

c0\alpha (t)
\bigm\| \bigm\| H\sansT 

i (t)(yi(t) - Hi(t)xi(t))
\bigm\| \bigm\| 

=c0\alpha (t)
\bigm\| \bigm\| H\sansT 

i (t)Hi(t)(\theta  - xi(t)) +H\sansT 
i (t)vi(t)

\bigm\| \bigm\| 
\leq c0\alpha (t)max

i\in \scrV 
sup
t\geq 0

\bigm\| \bigm\| H\sansT 
i (t)Hi(t)

\bigm\| \bigm\| max
i\in \scrV 

\| xi(t) - \theta \| + \=c2\alpha (t)
1 - 2(1 - \delta )

\rho 

\leq \=c3\alpha (t)
1+\delta + \=c2\alpha (t)

1 - 2(1 - \delta )
\rho .(4.15)

Consider (III) in (4.11). Since
\bigm\| \bigm\| \bigm\| xj(\tau 

j
k) - xj(t)

\bigm\| \bigm\| \bigm\| \leq fj(t),

c0\alpha (t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
j\in \scrN i

ai,j(xj(\tau 
j
k) - xj(t))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq c0d0\alpha (t)fmax(t).(4.16)

From inequalities (4.11), (4.12), (4.15), and (4.16), it follows that\bigm\| \bigm\| xi(t+ 1) - xi(\tau 
i
k)
\bigm\| \bigm\| \leq 

\bigm\| \bigm\| xi(t) - xi(\tau 
i
k)
\bigm\| \bigm\| + (\=c1 + \=c3)\alpha (t)

1+\delta 

+ \=c2\alpha (t)
1 - 2(1 - \delta )

\rho + c0d0\alpha (t)fmax(t).
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Under Assumption 3.2, there is a monotonically nonincreasing sequence \beta (t) =
O(\alpha (t)1 - 2(1 - \delta )/\rho ). Thus, there is a scalar \=c4 > 0, which could be different in dif-
ferent sample trajectories, such that\bigm\| \bigm\| xi(t+ 1) - xi(\tau 

i
k)
\bigm\| \bigm\| \leq 

\bigm\| \bigm\| xi(t) - xi(\tau 
i
k)
\bigm\| \bigm\| + \=c4\beta (t).

Denote Li
k := \tau ik+1  - \tau ik the interval length between the (k+1)th triggering time and

the kth triggering time; then we have\bigm\| \bigm\| xi(\tau 
i
k+1) - xi(\tau 

i
k)
\bigm\| \bigm\| =

\bigm\| \bigm\| xi(\tau 
i
k + Li

k) - xi(\tau 
i
k)
\bigm\| \bigm\| 

\leq 
\bigm\| \bigm\| xi(\tau 

i
k + Li

k  - 1) - xi(\tau 
i
k)
\bigm\| \bigm\| + \=c4\beta (\tau 

i
k + Li

k  - 1)

...

\leq \=c4

\tau i
k+Li

k - 1\sum 
s=\tau i

k

\beta (s) \leq \=c4L
i
k\beta (\tau 

i
k),

where the last inequality is obtained from the monotonicity of \beta (t).
A necessary condition to guarantee that the event is triggered for sensor i is

\=c4L
i
k\beta (\tau 

i
k) > fi(\tau 

i
k+1) \Leftarrow \Rightarrow Li

k >
fi(\tau 

i
k + Li

k)

\=c4\beta (\tau ik)
.(4.17)

Then we make the claim taht

lim inf
k\rightarrow \infty 

Li
k

(\tau ik)
\mu 
> 0,(4.18)

where \mu \in [1/2, 1) is introduced in Assumption 3.2. The proof of claim (4.18) is given

by contradiction. Suppose claim (4.18) does not hold, i.e., lim infk\rightarrow \infty 
Li

k

(\tau i
k)

\mu = 0. Then

\{ k\} \infty k=0 has a subsequence \{ kj\} \infty j=0 such that

lim
j\rightarrow \infty 

Li
kj

(\tau ikj
)\mu 

= 0,(4.19)

which means there is a finite integer J > 0 such that Li
kj

\leq (\tau ikj
)\mu for any j \geq J . It

follows from (4.17) and the monotonicity of \=f(t) that

Li
kj

>
\=f(\tau ikj

+ Li
kj
)

\=c4\beta (\tau ikj
)

=
\=f(\tau ikj

+ Li
kj
)

\=c4 \=f(\tau ikj
)

\=f(\tau ikj
)

\beta (\tau ikj
)
\geq 

\=f(\tau ikj
+ (\tau ikj

)\mu )

\=c4 \=f(\tau ikj
)

\=f(\tau ikj
)

\beta (\tau ikj
)
\geq \=c5

\=c4

\=f(\tau ikj
)

\beta (\tau ikj
)
,

where \=c5 > 0 exists due to Assumption 3.2(ii). From Assumption 3.2(iv), there is

\=c6 > 0 such that
\=f(t)
\beta (t) > \=c6t

\mu for any t \in \BbbN . Then Li
kj

> \=c5\=c6
\=c4

(\tau ikj
)\mu for j \geq J , which

contradicts (4.19). Thus, claim (4.18) holds.
According to (4.18), there is \=M > 0 such that Li

k > \=M(\tau ik)
\mu =: g(\tau ik) for any

k \in \BbbN . It follows that

g(\tau ik+1) - g(\tau ik) =
\=M(\tau ik + Li

k)
\mu  - \=M(\tau ik)

\mu \geq \=M(\tau ik + \=M(\tau ik)
\mu )\mu  - \=M(\tau ik)

\mu .
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According to Newton's generalized binomial theorem and \mu \in [1/2, 1), there are T1 > 0
and \~M > 0 such that for \tau ik \geq T1, we have \=M(\tau ik +

\=M(\tau ik)
\mu )\mu  - \=M(\tau ik)

\mu \geq \~M(\tau ik)
2\mu  - 1.

Therefore, for \tau ik \geq T1, it holds that

Li
k > g(\tau ik), g(\tau ik+1) - g(\tau ik) \geq \~M(\tau ik)

2\mu  - 1.(4.20)

Next, we prove the decay speed of the communication rate. For any sensor i \in \Gamma ,
it follows from the definition that \tau ik \rightarrow \infty as t \rightarrow \infty . Then there is an integer s > 0
such that \tau is \geq T1. Let t > \tau is; then we split the interval [0, t]\cap \BbbN into two subintervals,
namely, [0, \tau is]\cap \BbbN and (\tau is, t]\cap \BbbN . Denote \=s the triggering times of sensor i in (\tau is, t]\cap \BbbN .
Given the above finite s, for any \gamma \in [0, 2\mu 

2\mu +1 ), it is straightforward to see that

s

t1 - \gamma 
\rightarrow 0, t \rightarrow \infty .(4.21)

Recall that \tau ik is the kth triggering instant of sensor i \in \scrV in the time interval
[0, t] \cap \BbbN ; thus we have \tau ik \geq k. Then for \tau il \geq \tau is \geq T1, it follows from (4.20) that

g(\tau il ) = g(\tau is) +

l - 1\sum 
k=s

(g(\tau ik+1) - g(\tau ik))

\geq g(\tau is) +
\~M

l - 1\sum 
k=s

(\tau ik)
2\mu  - 1

\geq g(\tau is) + \~M

l - 1\sum 
k=1

k2\mu  - 1  - \~M

s - 1\sum 
k=1

k2\mu  - 1

\geq g(\tau is) + \~M2l
2\mu  - \~M

s - 1\sum 
k=1

k2\mu  - 1,

\geq \~M3l
2\mu ,(4.22)

where \~M2, \~M3 > 0, and the last inequality is obtained by using the sum formula in
[13, page 1].

Next, we consider \=s/t1 - \gamma . According to (4.20), (4.22), and \tau il \geq \tau is \geq T1 for l \geq s,
it follows that

t \geq t - \tau is \geq 
s+\=s - 1\sum 
l=s

Li
l \geq 

s+\=s - 1\sum 
l=s

g(\tau il ) \geq \~M3

s+\=s - 1\sum 
l=s

l2\mu \geq \~M4(s+ \=s - 1)2\mu +1,

where \~M4 > 0 and the last inequality is obtained by using the sum formula in [13,
page 1].

Due to \gamma \in [0, 2\mu 
2\mu +1 ), we use l'H\^ospital's rule to obtain

\=s

t1 - \gamma 
\leq \=s\Bigl( 

\~M4(s+ \=s - 1)2\mu +1
\Bigr) 1 - \gamma 

\=s\rightarrow \infty  - \rightarrow 0.(4.23)

Due to Ki(t) = s+ \=s, it follows that for any i \in \Gamma ,

Ki(t)

t1 - \gamma 

t\rightarrow \infty  - \rightarrow 0.(4.24)
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According to the definition of communication rate in Definition 2.1, it follows
that for any \gamma \in [0, 2\mu 

2\mu +1 ),

\lambda c(t)t
\gamma \leq 

\sum 
j\in \scrV 

| \scrN c
j | 
Kj(t)

t1 - \gamma 
=
\sum 

j\in \scrV \setminus \Gamma 

| \scrN c
j | 
Kj(t)

t1 - \gamma 
+
\sum 
j\in \Gamma 

| \scrN c
j | 
Kj(t)

t1 - \gamma 
\rightarrow 0, t \rightarrow \infty ,(4.25)

where the first item goes to zero since Kj(t) is upper bounded for j \in \scrV \setminus \Gamma , and the
second item goes to zero according to (4.24).

5. Numerical simulations. In this section, we provide two examples to illus-
trate the effectiveness of Algorithm 3.1 and the developed theoretical results.

5.1. Example 1. In this example, we consider the sensor network in Figure 1
with N = 7 sensors. Suppose the parameter vector to be estimated is \theta = [\theta 1, \theta 2]

\sansT ,
where \theta 1 =  - 1 and \theta 2 = 2. The sensor measurement matrices and the initial estimates
are in the following:

H1 = [1, 0]\sansT , H2 = [0, 1]\sansT , H7 = H5 = H3 = H1, H6 = H4 = H2,

x1(0) = [0, - 100]\sansT , x7(0) = x5(0) = x3(0) = x1(0),

x2(0) = [100, 0]\sansT , x6(0) = x4(0) = x2(0).

Suppose the time interval is from t = 0 to t = 1000. The noise of each sensor follows
a Gaussian process with mean zero and standard deviation 0.1. The noise processes
are independent in time and space.

Under the above setting, we conduct a Monte Carlo experiment with M0 = 100
runs for Algorithm 3.1 with \alpha i(t) = t - 0.7 and fi(t) = t - 0.5 for i = 1, 2, . . . , 7. To
evaluate the mean-square error (MSE), we define

MSE(t) =
1

NM0

M0\sum 
j=1

N\sum 
i=1

\bigm\| \bigm\| \bigm\| xj
i (t) - \theta 

\bigm\| \bigm\| \bigm\| 2 ,(5.1)

where xj
i (t) is the estimate of \theta by sensor i at time t in the jth run. The simulation

results are provided in Figure 2. From Figure 2(a), the average estimate of all sensors
is asymptotically convergent to the true parameter vector. The event-triggered com-
munication triggering instants of sensors 1, 2, 4, and 7 are provided in Figure 2(b),
where we can see less and less communication occur as time goes on. The communica-
tion rate is 0.08 in the interval t = [0, 1000]\cap \BbbN . The dynamics of the communication
rate in the given interval is provided in Figure 2(c), where the communication rate
remains 1 from t = 1 to t = 30, meaning that sensors persistently communicate
with each other. This is because at the initial time, much informative data can be
used to update the sensor estimates. As time goes on, the communication rate is
tending to zero, since sensors only transmit informative data which is becoming less.
Moreover, in order to illustrate the convergence rate of the communication rate, we
provide the dynamics of (t  - 30) - 0.45 for t > 30. From Figure 2(c), the communica-
tion rate asymptotically decays to zero faster than (t - 30) - 0.45, corresponding to the
results in Theorem 3.12. The mean-square convergence of the algorithm is illustrated
in Figure 2(d), corresponding to Theorem 3.6. Moreover, by choosing three trigger-
ing thresholds, i.e., fi(t) = t - 0.8, t - 0.6, t - 0.4, we provide Figure 3 for illustrating the
influence of triggering threshold to communication rate and MSE. From this figure,
for the threshold with a faster decreasing speed, the corresponding communication
rate decays more slowly, while the MSE decays more quickly. This indicates that the
threshold leads to a tradeoff between communication rate and MSE, corresponding
to Remark 3.13.
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(a) Element-wise asymptotic convergence.
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(d) Mean-square convergence.

Fig. 2. Simulation results of Algorithm 3.1.
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(a) Dynamics of communication rate \lambda c(t).
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(b) Mean-square convergence.

Fig. 3. Communication rate and MSE of Algorithm 3.1 under three triggering thresholds.

5.2. Example 2. In this example, we compare the proposed algorithm with
three existing algorithms over a sensor network whose size is larger than that in
Example 1. Consider an undirected connected sensor network with 200 nodes for
estimating a target position \theta = [1, 2, 5]. The sensor network topology is generated
as a random geometric graph and provided in Figure 4(a), where two types of sensors
are deployed with the same number (i.e., 100) and denoted by black circles and red
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(a) Sensor network.
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(b) MSE performance of four algorithms.

Fig. 4. Comparison of four distributed algorithms over a sensor network with 200 nodes.

diamonds. Assume for any i = 1, 2, . . . , 200 the weight ai,j = 1 for j \in \scrN i. The
measurement matrices of black-circle and red-diamond sensors are assumed to be
HA = [0, 0, 1] and HB = [1, 0, 0; 0, 1, 0], respectively. Suppose the sensor noise follows
a standard Gaussian process and is independent in both space and time.

We compare Algorithm 3.1 with three typical distributed estimation algorithms in
the literature: the generalized linear unconstrained algorithm from [21], the diffusion
least-mean squares algorithm from [27], and the distributed parameter algorithm from
[38]. The parameters in our algorithm are \alpha i(t) = (t+ 100) - 0.7 and fi(t) = t - 0.5 for
i = 1, 2, . . . , 200. The parameters in the algorithm of [21] are \alpha (t) = 10/(t + 1)0.7,

\beta (t) = 0.1/(t+1)0.7, and K = (
\sum 200

i=1 H
T
i Hi)

 - 1, where Hi is the measurement matrix
of sensor i. The parameters in the algorithm of [38] are b(t) = (t+100) - 0.7 and ai,j = 1
for i, j = 1, 2, . . . , 200. The parameters in the algorithm of [27] are \mu (t) = (t+100) - 0.7

and ci,j = 1/| \scrN i + 1| for j \in \scrN i

\bigcup 
\{ i\} , i = 1, 2, . . . , 200. The initial parameter

estimate is zero for each algorithm. We compare our event-triggered algorithm with
the above three time-triggered algorithms under the same communication rate \lambda c =
0.09. It means that for the three time-triggered algorithms, each sensor receives the
messages from neighbors for every 11 \approx 1/\lambda c steps; before that they use the latest
messages from neighbors to run the algorithms. Under this setting, we conduct a
Monte Carlo experiment for running the four algorithms simultaneously with 100 runs.
With the MSE notation in (5.1), the performance of these algorithms are illustrated
in Figure 4(b). It shows that the outputs of all algorithms are convergent to the true
parameter vector, and our event-triggered distributed algorithm outweighs the other
three algorithms in convergence speed under the same communication rate constraint.

6. Conclusion. In this paper, a distributed parameter estimation problem over
a sensor network with event-triggered communications was studied. First, a fully
distributed estimation algorithm was proposed based on an event-triggered commu-
nication scheme which determines when a sensor should share the parameter esti-
mates with neighboring sensors. Then, under mild conditions, some main estimation
properties of the algorithm including mean-square and almost-sure convergence were
analyzed. The convergence rates were also estimated. Under some extra conditions,
it was proved that the communication rate of the whole network using the proposed
algorithm decays to zero almost a.s. time goes to infinity, which indicates that a
tremendous amount of redundant communications are avoided. It was also shown that
adjusting the decay speed of the triggering threshold can lead to a tradeoff between
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the convergence rate of the estimation error and the decay speed of the communica-
tion rate. Future work can be done by considering more general models of systems
and networks, such as nonlinear measurement models and time-varying, unbalanced,
or stochastic graphs.
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