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a b s t r a c t

Learning algorithm design and applications of state-based games are investigated. First, a heuristic
uncoupled learning algorithm, which is a two memory better reply learning rule, is proposed. Under
reachability conditions it is proved that for any initial state, if all agents in the state-based game
follow the proposed learning algorithm, the action state pair converges almost surely to an action
invariant set of recurrent state equilibria. The design of the learning algorithm relies on global and
local searches with finite memory, inertia, and randomness. Then, existence of time-efficient universal
learning algorithm is studied. Finally, applications of our proposed learning algorithm are discussed,
including learning pure Nash equilibrium in finite games and cooperative control with time-varying
communication structure.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Many systems, such as biological networks, social networks
(French, 1956), and engineering systems, can be described as a
collection of interacting subsystems, in which local decisions are
made with local information (Marden & Shamma, 2015). It is the
core mission in such systems to ensure the emergence of desir-
able collective behavior by designing proper local control strate-
gies. Game-theoretical method is becoming an appealing tool in
control of the above systems as it provides a modularized design
architecture, i.e., interaction structures and learning algorithms
can be designed separately (Marden & Shamma, 2015; Ocampo-
Martinez & Quijano, 2017). Some outstanding works include:
(i) consensus/synchronization of multi-agent systems (Marden &
Shamma, 2015); (ii) distributed optimization (Yang & Johansson,
2010); (iii) optimization in energy (Saad, Han, Poor, et al., 2012)
and transportation networks (Wang, Xiao, Wongpiromsarn, et al.,
2013), just to name a few.

State-based game, an extended model in game-theoretic con-
trol, was proposed in Marden (2012), which is a simplification
of stochastic games Shapley (1953). In fact, the original idea
of state-based games can be traced back to Young (2004, Sec-
tion 9, Conclusion). Since then state-based games have shown
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their strong vitality in many fields, such as achieving Pareto
optimality (Marden, Young, & Pao, 2014), realizing cooperative
coverage in unknown environment (Rahili & Ren, 2014), and
solving distributed economic problems in smart grid (Liang, Liu,
Wei, et al., 2016). Particularly, a completely uncoupled learning
algorithm for general games is designed for the first time using
the theory of state-based games and regular perturbed Markov
chain (Young, 2009).

Compared with traditional game-theoretical framework, state-
based games provide an additional degree of freedom, which is
called state, to help coordinate group behavior. The underlying
‘‘state’’ has a variety of interpretations ranging from a dummy
agent (Marden, 2012) or external environment (Young, 2004) to
real agents with unknown dynamics or dynamics for equilib-
rium selection (Marden, 2017; Pradelski & Young, 2012). Because
this additional degree of freedom is provided to help coordinate
system level behavior, state-based game is extremely useful in
game-theoretic control.

One of the core challenges in applying state-based game model
to game-theoretic control is how to design a strategic learning
algorithm which can converge to the equilibria of the games.
Although (Marden, 2012) proposed a finite memory learning al-
gorithm for state-based potential games, to our best knowledge,
there is no strategic learning algorithm for general state-based
games. The purpose of this paper is to design a heuristic algorithm
for general state-based games and to discuss the applications
of state-based games. In this paper, all agents are supposed to
improve their one-shot payoff. The equilibrium in state-based
games is called recurrent state equilibrium.

The first contribution of this paper is that a heuristic learning
algorithm for general state-based games is developed. The pro-
posed algorithm is a two memory better reply learning rule. The
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two-memory strategy is used to test whether the recurrent state
equilibrium is obtained, while the better-reply rule makes each
agent improve its one-shot payoff. The design of the algorithm
relies on global and local searches depending on two-memory
information, inertia, and randomness, and its insight is illustrated
intuitively. Under the reachable condition, it is proved that the al-
gorithm converges almost surely to a recurrent state equilibrium
of state-based games.

The second contribution is that several applications of the
designed learning algorithm are discussed: (i) When the model
is reduced to normal game (i.e., there is no state), our proposed
algorithm still works. A numerical case study is provided to
demonstrate the validity. (ii) An example is presented to solve
cooperative control problem of multi-agents with time-varying
communication structure by designing proper utility functions.

The rest of this paper is organized as follows: Section 2
provides some preliminaries, including the formal definition of
state-based games, recurrent state equilibrium, and the theory of
learning in state-based games. Section 3 focuses on the design
of a learning algorithm for general state-based games. Section 4
considers applications of state-based game. A brief conclusion
is given in Section 5. Convergence of our proposed learning
algorithm is proved in Appendix A.

2. Preliminaries

2.1. State-based games

Definition 1 (Marden, 2012). A finite state-based game is a quin-
tuple G = {N, {Ai}i∈N , {ci}i∈N , X, P} where

(1) N = {1, 2, . . . , n} is the set of agents;
(2) Ai = {1, 2, . . . , ki} is the set of actions of agent i;
(3) ci : A × X → R is agent i’s payoff function, where

A =
∏n

i=1 Ai is the action profile set, and
∏

is the Cartesian
product;

(4) X = {1, 2, . . . ,m} is the underlying finite state set;
(5) P : A × X → ∆(X) is the Markovian state transition

function, where ∆(X) denotes the set of probability distri-
butions over the finite state space X .

Let P(a; x, y) denote the state transition probability from state
x ∈ X to state y ∈ X under the action a ∈ A. Denote P(a; ·, ·) the
probability transition matrix of a joint action a ∈ A. Obviously, a
Markov chain is defined by P(a; ·, ·) with state pace X .

When a state-based game is played repeatedly, a sequence of
states

x(0), x(1), . . . , x(t), . . .

and a sequence of joint actions

a(0), a(1), . . . , a(t), . . .

are generated. [a(t), x(t)] ∈ A × X is referred to the action state
pair at time t . We give a rough description on how the action
state pair evolves. The sequence of action profiles is generated
from some specified decision algorithm. Suppose the current state
is x(t), and the action taken by all agents at time t is a(t), then
x(t+1) is generated by the state transition function P(a(t); x(t), ·),
i.e., the ensuing state is selected randomly according to the prob-
ability distribution P(a(t); x(t), ·). The dynamics of state-based
games can be described as in Fig. 1, where ‘⊨’ signifies that the
ensuing state x(k + 1) is selected according to the probability
distribution P(a(k); x(k), ·).

Denote by X(a|x) ⊆ X the set of reachable states starting from
initial state x driven by an invariant action a. That is to say, a state
y ∈ X(a|x) if and only if there exists a time ty > 0 such that

Pr[x(ty) = y] > 0,

Fig. 1. Dynamics of state-based games.

Table 1
Payoff Bi-Matrix for x = 1 of Example 4 (coordination game).
Agent 1 Agent 2

1 2

1 (4, 4) (1, 3)
2 (3, 1) (2, 2)

Table 2
Payoff Bi-Matrix for x = 2 of Example 4 (prisoner’s dilemma game).
Agent 1 Agent 2

1 2

1 (2, 2) (0, 3)
2 (3, 0) (1, 1)

conditioned on the events x(0) = x and x(k + 1) ⊨ P(a; x(k), ·) for
all k ∈ {0, 1, . . . , ty − 1}. The transition process can be illustrated
as

x
a

−→ x(1)
a

−→
a

· · ·
a

−→ x(ty − 1)
a

−→ x(ty) = y.

As a generalization of Nash equilibrium, the equilibrium in
state-based games is called recurrent state equilibrium (RSE).

Definition 2 (Marden, 2012 Recurrent State Equilibrium). Consider
a state-based game G. The action state pair [a∗, x∗

] is a recurrent
state equilibrium with respect to the state transition process P if
the following two conditions are satisfied:

(1) The state x∗ satisfies x∗
∈ X(a∗

|x) for every state x ∈

X(a∗
|x∗);

(2) For each agent i ∈ N and every state x ∈ X(a∗
|x∗),

ci(a∗

i , a
∗

−i, x) ⩾ ci(ai, a∗

−i, x), ∀ai ∈ Ai.

The first condition means that if the action state pair [a∗, x∗
]

is a recurrent state equilibrium, then X(a∗
|x∗) is a recurrent class

of the Markov chain P(a∗
; ·, ·) starting from the initial state x∗.

The second condition implies that a∗ is a pure Nash equilibrium
of state invariant game Gx := {N, {Ai}i∈N , {ci(·, x)}i∈N} for every
state x ∈ X(a∗

|x∗).

Remark 3. As the state-based game model has probabilistic
transition of the states, it is obvious that evaluating long term
cost can provide more accurate estimation. But in some situations
agents do not know the Markovian state transition function P.
Then it is impossible to calculate the long term expected cost for
each agent.

Example 4. Consider the following state-based game with N =

{1, 2}, A1 = A2 = {1, 2}, X = {1, 2, 3}. The game Gx is
a coordination game, prisoner’s dilemma game, and matching
pennies game when x = 1, 2, and 3, respectively. The payoff
matrices are shown in Tables 1–3. The state transition process is
shown in Fig. 2.

One can verify that the recurrent states of Markov chain P(a =

22, ·) are x = 1, x = 2, and a = 22 is a pure Nash equilibrium
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Table 3
Payoff Bi-Matrix for x = 3 of Example 4 (matching pennies game).
Agent 1 Agent 2

1 2

1 (−1, 1) (1, − 1)
2 (1, − 1) (−1, 1)

Fig. 2. State transition diagram of Example 4.

when x = 1, 2. Therefore, action state pairs [a = 22, x = 1]
and [a = 22, x = 2] both are the recurrent state equilibria of
Example 4. Although a = 11 is the pure Nash equilibrium of
G1, x = 1 is a transient state of Markov chain P(a = 11, ·). So
[a = 11, x = 1] is not a recurrent state equilibrium.

2.2. Learning in state-based games

Consider a repeated state-based game. The observed sequence
of agent i at time t is {{a(τ ), x(τ )}τ=0,...,t−1, x(t)}. Let Oi(t) denote
the obtained/available information of agent i at time t , that is,

Oi(t) :=
{

{a(τ ), x(τ )}τ=0,1,...,t−1, x(t)
}
.

Generally speaking, the action updating mechanism of agent i
can be described by a response function fi (Jordan, 1993),

fi : Oi(t) → ∆(Ai),

where fi is a function which maps agent i’s available information
Oi(t) to a probability distribution over i’s own actions Ai. Agent
i selects the action ai(t + 1) ∈ Ai according to this probability
distribution at time t + 1.

According to the available information used in making de-
cisions, the most common learning algorithms can be catego-
rized as uncoupled learning algorithms and completely uncoupled
learning algorithms, whose definitions are shown as follows.

Definition 5 (Talebi, 2013). A learning algorithm is called
(i) uncoupled if the available information of agent i used for

decision-making is the payoff structure of himself and history
sequence of the play, i.e.,

Oi(t) =
{

{a(τ ), x(τ )}τ=0,1,...,t−1, x(t); ci(a, x)
}
.

(ii) completely uncoupled if the available information of agent
i used for decision-making is his own past realized payoffs and
actions, i.e.,

Oi(t) =
{

{ai(τ ), x(τ ), ci(a(τ ), x(τ ))}τ=0,1,...,t−1, x(t)
}
.

The paper focuses on designing a natural and effective strategic
learning algorithm which converges to a recurrent state equilib-
rium. By natural we require the algorithm being uncoupled or

completely uncoupled. By effective we mean that the designed
algorithm should converge to the equilibrium heuristically, not
be trapped in an adjustment cycle, and not be predicted easily by
each agent’s opponents.

3. A two-memory better reply learning rule

3.1. Available information

Consider a repeated state-based game. Each agent seeks to
maximize one-shot payoff. Agent i knows his own payoff func-
tion, but he does not know his opponents’ ones. He can observe
the current state x and his opponents’ actions a−i ∈ A−i :=∏

j̸=i Aj, but the agent does not know the structure of the Marko-
vian state transition function P . Each agent can recall the past
2-period information at each time. Denote by ξi(t) the informa-
tion used to make decision for agent i at time t ≥ 2

ξi(t) :=
{
a(t − 2), a(t − 1), x(t); ci(a, x)

}
.

Then the response function fi of agent i has the following form

pi(t) = fi
(
ξi(t)

)
∈ ∆(Ai).

For any action state pair [a, x] ∈ A× X , agent i’s strict better reply
set is defined as

Bi(a; x) :=
{
a′

i ∈ Ai : ci(a′

i, a−i, x) > ci(a, x)
}
.

For simplicity, let Bi(t) := Bi(a(t − 1); x(t)), ∀t ≥ 1.

3.2. The flow of the two-memory better reply learning algorithm

Suppose the information of the past two periods at time t ≥ 2
is [a(t − 2), x(t − 1)]× [a(t − 1), x(t)] ∈ (A× X)× (A× X). Denote
by paii (t) the probability that agent i selects ai ∈ Ai at time t . The
learning algorithm is described as follows:

(i) Check whether a(t − 2) = a(t − 1) or not at time t .

(ii) If a(t − 2) = a(t − 1). Then each agent calculates Bi(t) and
checks whether Bi(t) = ∅ or not.

• If Bi(t) = ∅, then agent i plays ai(t − 1) at next moment.
• If Bi(t) ̸= ∅, then agent i selects an action according to the

following probability distribution.{
pai(t−1)
i (t) = ϵi,

paii (t) =
1−ϵi
|Bi(t)|

, ∀ai ∈ Bi(t),
(1)

where ϵi ∈ (0, 1) is the inertia of agent i.

(iii) If a(t − 2) ̸= a(t − 1), then all agents take actions simulta-
neously according to the following probability distributions.{
pai(t−1)
i (t) = ϵi,

paii (t) =
1−ϵi

|Ai|−1 , ∀ai ∈ Ai \ {ai(t − 1)}.
(2)

Remark 6. The proposed learning algorithm is a two-memory,
stochastic learning algorithm with inertia ϵi for agent i. It is a
combination of testing, searching, and lock-in. Since the learning
algorithm is a two-memory one, every agent can observe his
opponents’ actions. So each agents can tell whether a(t − 2) =

a(t − 1) or not. This is testing. The searching process consists of
local search and global search. If a(t − 2) ̸= a(t − 1), then all
agents take actions simultaneously according to their probability
distributions with full support. This is a global stochastic search,
both for agents and actions. If a(t − 2) = a(t − 1) and Bi(t) ̸= ∅,
then agent i will take actions from Bi(t). This is a local random
search. If a(t − 2) = a(t − 1) and [a(t − 2), x(t − 2)] is an RSE, all
agents will repeat their actions forever, which is called lock-in.
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Fig. 3. Flow of the two-memory better reply rule.

Denote by h(t) := {a(t − 2), a(t − 1), x(t)} the past two plays,
t > 2. Then the flow of the two-memory better reply learning
algorithm can be described as in Fig. 3.

3.3. Convergence of the proposed learning algorithm

Consider a state-based game G =
{
N, {Ai}, {ci}, X, P

}
. Let

P̄(·, ·) :=
1
|A|

∑
a∈A

P(a; ·, ·),

and we know that P̄(·, ·) ∈ R|X |×|X | is row stochastic. Then a
Markov chain is defined by P̄ with X as its state space. Suppose
G has at least one RSE, and let

A∗
= {a ∈ A| ∃x ∈ X , s.t. [a, x] is a RSE}.

For a ∈ A∗, denote

X(a) := {x ∈ X : ∃x∗
∈ X(a|x), s.t. [a, x∗

] is an RSE}.

The set X(a), ∀a ∈ A∗ contains all states from which the algorithm
can reach an RSE class of action awith positive probability by only
adopting the same action a. Let X∗

:=
⋃

a∈A∗ X(a) ⊆ X .

Assumption 7 (Reachability Condition). Consider a state-based
game. Suppose that either X = X∗, or X ̸= X∗ and the following
assumptions hold:

(i) For every recurrent class R̄ of P̄ , there exists an action a∗
∈ A

and a state x∗
∈ R̄ such that [a∗, x∗

] is an RSE.

(ii) P(a; x, x) > 0 for all a ∈ A and x ∈ X \ X∗.

Theorem 8. Consider a state-based game G = {N, {Ai}, {ci}, X, P},
where the recurrent state equilibria exist. Suppose that Assumption 7
is satisfied. Then for any initial state x0 ∈ X, if all agents play the
game G by the proposed two memory better reply learning algorithm,
the action state pair converges almost surely to an action invariant
set of recurrent state equilibria.

Conditions in Assumption 7 guarantee that under the action
of the proposed learning algorithm, there exists a positive prob-
ability ‘‘path’’ which leads any initial action state pair to an RSE.
The proof of Theorem 8 is presented in Appendix B.

Remark 9. It is worth noting that under the proposed learning
rule action state pair can converge to an action invariant set of
recurrent state equilibria. Denote by [a∗, x∗

] the converged action
state pair. The state can move around inside the recurrent class
X(a∗

|x∗) of Markov chain P(a∗
; ·, ·), which causes the one stage

payoff of each player to change. But most of all, the action profile,
which is optimal for all the states in X(a∗

|x∗), does not change.

The following example shows that the assumption (ii) of
Theorem 8 avoids the situation where some desired actions
cannot be selected according to the learning algorithm.

Table 4
Payoff Bi-Matrix for x = 1 of Example 10.
Agent 1 Agent 2

C D

C (5, 4) (2, 3)
D (4, 2) (3, 1)

Table 5
Payoff Bi-Matrix for x = 2 of Example 10.
Agent 1 Agent 2

C D

C (1, 2) (3, 1)
D (2, 0) (2, 1)

Table 6
Payoff Bi-Matrix for x = 3 of Example 10.
Agent 1 Agent 2

C D

C (−1, 1) (1, −1)
D (1, −1) (−1, 1)

Table 7
Payoff Bi-Matrix for x = 4 of Example 10.
Agent 1 Agent 2

C D

C (2, 2) (2, 3)
D (0, 3) (3, 1)

Example 10. Consider the following state-based game with
N = {1, 2}, A1 = A2 = {C,D}, X = {1, 2, 3, 4}, and A =

{CC, CD,DC,DD}. The payoff bi-matrices are shown in Tables 4–7.
The Markovian state transition matrices are as follows:

P(CC; ·, ·) =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 1

2
1
2 0

0 0 1
2

1
2

⎤⎥⎥⎥⎦ , P(CD; ·, ·) =

⎡⎢⎢⎢⎢⎣
1 0 0 0
1
2

1
2 0 0

0 0 0 1

0 0 0 1

⎤⎥⎥⎥⎥⎦ ,

P(DC; ·, ·) =

⎡⎢⎢⎣
1
2

1
2 0 0

0 0 0 1
0 0 0 1
0 0 0 1

⎤⎥⎥⎦ , P(DD; ·, ·) =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1
2 0 1

2

0 0 0 1

0 0 0 1

⎤⎥⎥⎥⎥⎦ .

It can be observed that the only RSE is (CC, 1). Suppose that
x(0) = 4, and the only possible choice of actions such that the
system leaves the state 4 and reaches the state 2 is adopting
CC twice. This is because a(0) must be CC and x(1) = 3 with
probability 1/2. Although a(1) can be any action in A, actions CD,
DC, and DD make the system return to the state 4. Therefore,
a(1) should be CC too, and x(2) = 2 with probability 1/2 on the
condition that x(1) = 3.

However, since B1(CC, 2) = {D} and B2(CC, 2) = ∅, the
algorithm can only select actions from set {CC,DC} at time t = 2.
The choice CC makes the system stay at 2, while the latter makes
x(3) = 4, and everything returns to the beginning. Thus, the algo-
rithm cannot reach the RSE from the initial state x(0) = 4, though
P̄ is irreducible, and the assumption (i) of Theorem 8 holds.

3.4. Existence of universal time-efficient learning algorithm

One may be interested in the complexity of the proposed
learning algorithm, especially the time efficiency. The time effi-
ciency of a learning algorithm is defined as follows:
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Definition 11 (Talebi, 2013). A learning algorithm is called time ef-
ficient if the time for the algorithm to converge to an equilibrium
is polynomial with respect to the number of agents.

Hart and Mansour (2010) proved that there does not exist any
time-efficient uncoupled learning algorithm that converges to a
pure Nash equilibrium for generic normal form games where such
an equilibrium exists. As state-based games contain normal form
games as its special case, we can conclude that:

Proposition 12. There does not exist any time-efficient uncoupled
learning algorithms that converge to a recurrent state equilibrium
for general state-based games where such an equilibrium exists.

In fact, when it comes to state-based games, things become a
bit more complicated. There is even no universal learning algo-
rithm converging to a recurrent state equilibrium.

Remark 13. If for all Markov chain P(a; ·, ·), ∀a ∈ A, there exists
a common closed set, denoted by X c

⊆ X , such that, for all
[a, x] ∈ A × X c , [a, x] is not an RSE. Then there does not exist
any uncoupled learning algorithm that converges to an RSE for
generic state-based games even if such an equilibrium exists.

The reason why there does not exist such learning algorithms
is that for a given state-based game the dynamic of the state
P(a; ·, ·) is pre-given, which is uncontrollable.

4. Applications

4.1. Learning pure Nash equilibrium in finite games

We present the relations between the proposed learning rule
and existing works.

Corollary 14.

(1) When the state-based model is reduced to the normal games
(i.e., there is no state), our proposed two-memory better reply
algorithm is similar to the two-memory learning rule pro-
posed in Hart and Mas-Colell (2006). Therefore, our proposed
two-memory better reply algorithm can be used to find pure
Nash equilibria in normal games where such equilibria exist.

(2) Our proposed learning rule is two-memory better reply learn-
ing rule, which is different with the existing rule. For example,
the gradient play is suitable for normal games with continuous
action set, and our algorithm is designed for finite games. And
the fictitious play (Shamma & Arslan, 2005) requires that all
agents remember all previous actions at each time. As for best-
response rule, it can be trapped into a best reply cycle, as
shown in Fig. 5.

(3) Marden (2012) proposed a finite memory better reply learning
rule for state-based potential games. Marden (2012)
proved that a one memory can ensure that the proposed
learning rule converges almost surely to an action invariant
set of recurrent state equilibria in state-based potential games.
Our results show that the memory is at least two to converge
almost surely to an action invariant set of recurrent state
equilibria for general state-based games.

We present an example to illustrate the effectiveness of the
proposed 2-memory learning rule for normal form games.

Example 15. Consider a 3-player game constructed by Hart and
Mas-Colell (2006), whose payoff matrix is shown in Fig. 4. Each
player has three actions α, β , and γ . One can find that there is a
cycle using traditional 1-memory adjustment rule, such as better
response rule. Fig. 5 shows that how cycle is formed. Once the

Fig. 4. S. Hart game (Hart & Mas-Colell, 2006).

Fig. 5. A cycle in traditional 1-memory adjustment process.

Fig. 6. Dynamics of Hart’s game using the proposed learning rule with initial
actions a(0) = (2, 2, 2), a(1) = (3, 3, 3).

process enters in this cycle, there is no possibility to escape from
it using 1-memory adjustment rule.

However using the proposed two-memory better reply with
inertia learning rule, it can converge almost surely to the pure
Nash equilibrium (γ , γ , γ ) in Hart’s game. Denote by 1 := α,
2 := β , 3 := γ . The simulation results are shown in Fig. 6.

4.2. Cooperative control with time-varying communication structure

In the framework of state-based games, the underlying ‘‘state’’
has a variety of interpretations ranging from a dummy agent
(Marden, 2012) or external environment (Young, 2004) to a real
player with unknown dynamics. In other words, the state pro-
vides an additional degree of freedom for a system designer to
help regulate group behavior. In the following we give an exam-
ple to interpret how to realize consensus for a multi-agent sys-
tem through local-information utility design using the proposed
learning rule.
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Fig. 7. MAS with time-varying communication structure.

Table 8
Markovian state transition matrices of Example 16.
P(a, x1) a

111 112 121 122 211 212 221 222

p11(a) 1/3 1/4 1/2 1 1/2 0 1/3 1/3
p12(a) 1/3 1/4 0 0 1/4 1 0 1/3
p13(a) 1/3 1/2 1/2 0 1/4 0 2/3 1/3

P(a, x2) a

111 112 121 122 211 212 221 222

p21(a) 1 0 2/3 0 0 1/2 0 1/3
p22(a) 0 1 1/3 1/6 5/6 1/2 0 1/6
p23(a) 0 0 0 5/6 1/6 0 1 1/2

P(a, x3) a

111 112 121 122 211 212 221 222

p31(a) 1/2 1/2 1 0 1/4 0 1 1/4
p32(a) 0 1/2 0 1/2 0 1 0 1/4
p33(a) 1/2 0 0 1/2 3/4 0 0 1/2

Example 16. Consider a multi-agent system (MAS) with three
agents N = {1, 2, 3}. Each agent has two actions, i.e. Ai =

{1, 2}, i = 1, 2, 3. The communication structure x, which is
shown in Fig. 7, is time-varying. Define the state set as X =

{x1, x2, x3}, where x1 means x connecting with agent 1, x2 means
x connecting with agent 2, and x3 means x disconnecting. The
dynamics of state x is a Markovian state transition process, which
is shown in Table 8. Assume each agent can observe its neighbor’s
actions. The system level goal is to realize consensus at (2, 2, 2),
regardless of which state it is. To realize the system level goal,
the technique is to convert this problem into a state-based games
with [(2, 2, 2), x] as its recurrent state equilibrium, ∀x ∈ X . Then
using the proposed learning rule, the system will converge to the
recurrent state equilibrium. The following is the detailed design
procedure.
(a) State evolution process analysis:

The dynamics of the state x is a Markov chain under joint
actions a ∈ A := A1×A2×A3. State xi transfers to state xj under ac-
tion a with probability pij(a), ∀i, j = 1, 2, 3. According to Table 8,
one can verify that the Markov chain P(a = 222; ·, ·) is aperiodic
and irreducible. Therefore we can design the utility function such
that the joint action (2, 2, 2) is a pure Nash equilibrium for all
x ∈ X .
(b) Local-information utility design:

As each agent can only observe its neighbor’s actions, the
designed utility function of each agent should satisfy: (i) local
information based, i.e. ci(a, x) = ci(aNi , ai, x), ∀i ∈ N , where Ni is
the neighbor of player i; (ii) with (2, 2, 2) as its Nash equilibrium;
and (iii) Assumptions in Theorem 8. The designed utility functions
are shown in Table 9. One can verify that the designed utility
functions satisfy the requirements (i), (ii) and (iii). In fact, the de-
signed utility functions can guarantee that [(2, 2, 2), x], ∀x ∈ X is
an action invariant set of recurrent state equilibria of the designed
state-based game, which satisfies Assumptions in Theorem 8.
Here ci(a, x) is the payoff of player i when the joint action is a
and the state is x.

Table 9
Designed utility function of Example 16.
ci(a, x1) a

111 112 121 122 211 212 221 222

c1 1 0 0 −1 1 1 2 3
c2 1 1 2 2 1 1 3 3
c3 −1 0 −1 0 1 3 1 3

ci(a, x2) a

111 112 121 122 211 212 221 222

c1 1 1 3 3 0 2 5 5
c2 1 0 3 4 5 2 4 7
c3 1 0 −1 2 1 0 −1 2

ci(a, x3) a

111 112 121 122 211 212 221 222

c1 1 1 0 0 −1 −1 4 4
c2 2 2 3 3 1 1 5 5
c3 2 3 2 3 2 3 2 3

(c) Simulation results:
The initial joint actions of all agents are a(0) = (1, 2, 2) and

a(1) = (2, 1, 2). Denote 1 := x1, 2 := x2, 3 =: x3. The initial
state is x(0) = 3. As we can see in Fig. 9, using the proposed
learning rule the joint actions converge to (2, 2, 2) after 20 steps,
regardless of which state it is, as is shown in Fig. 8.

5. Conclusion

An extended model in game theory, called state-based games,
is investigated in this paper. An uncoupled two memory bet-
ter reply learning algorithm is proposed. We proved that under
reachable conditions the proposed learning algorithm converges
to a recurrent state equilibrium of a state-based games. The
existence of time-efficient universal learning algorithm is also in-
vestigated. It is proved that using the learning algorithm proposed
in this paper, one can realize learning pure Nash equilibrium in
finite normal games and cooperative control with time-varying
communication structure. Since an additional degree of freedom
is provided to help coordinate group behavior, state-based game
is a useful extended model in game-theoretic control.

Future works include: (i) applications of the state-based game
model and the learning algorithm to engineering control prob-
lems; (ii) taking the long run average cost for evaluation in the
state-based games.

Appendix A. The proposed algorithm and corresponding
Markov chain

The proposed two-memory learning algorithm defines a
discrete-time Markov chain {ω(t), t ≥ 0} with finite state space
Ω := X × A × X × A × X , where ω(t) = [x(t), a(t), x(t + 1), a(t +

1), x(t + 2)]T , t ≥ 0.
Let xi ∈ X and ai ∈ A be the state and action at time i,

respectively. The initial distribution of the Markov chain {ω(t)}
is

Pr
{
ω(0) = [x0, a0, x1, a1, x2]T

}
=

(∏
1≤i≤n

1
|Ai|

)2
p(x0)P(a0; x0, x1)P(a1; x1, x2),

where p : X → [0, 1] is the probability distribution of the initial
state. For the sake of simplification, suppose the inertia of agent
i is the same, i.e., ϵ = ϵi.

Consider any two states ω1, ω2 ∈ Ω of the Markov chain
{ω(t)}, where ω1 = [x1, a1, x2, a2, x3]T and ω2 = [y1, b1, y2, b2,
y3]T . According to the learning algorithm, the transition proba-
bility from ω1 to ω2 of the Markov chain {ω(t)} is as follows:
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Fig. 8. Dynamics of states of Example 16.

Fig. 9. Dynamics of actions of each agent in Example 16.

(1) If [y1, b1, y2] ̸= [x2, a2, x3], then

Pr {ω(t + 1) = ω2|ω(t) = ω1} = 0.

(2) If [y1, b1, y2] = [x2, a2, x3] and a1 ̸= a2, then

Pr {ω(t + 1) = ω2|ω(t) = ω1}

= ϵn−|H(b1,b2)|
·

∏
i∈H

1 − ϵ

|Ai| − 1
· P(b2; y2, y3),

where H(a, b) := {i ∈ N : ai ̸= bi}, a, b ∈ A.
(3) If [y1, b1, y2] = [x2, a2, x3] and a1 = a2, then

Pr {ω(t + 1) = ω2|ω(t) = ω1}

= ϵn−|H(b1,b2)|−|N(b1,y2)|
× P(b2; y2, y3)

×

∏
i∈H

1 − ϵ

|Bi(b1, y2)|
IBi(b1,y2)((b

2)i),

where N(a, x) := {i ∈ N : Bi(a, x) = ∅}, and IBi(a,x)(bi) is an
indicator function such that IBi(a,x)(bi) = 1 if bi ∈ Bi(a, x)
and IBi(a,x)(bi) = 0 if bi /∈ Bi(a, x), a ∈ A, x ∈ X, bi ∈ Ai.

Appendix B. Proof of Theorem 8

Denote D(a, x) := {b ∈ A : bi ∈ Bi(a, x) ∪ {ai}, i ∈ N} as
the collection of action vectors whose ith entry is ai or a strict
better-reply action for (a, x). From the definition, we know that
{a} ⊆ D(a, x) ⊆ A for any a ∈ A and x ∈ X .

Lemma 17. Consider a state-based game, where the RSE exists. For
any fixed initial value x(0) = x0 and fixed action–state pairs (a0, x1),
(a1, x2) of the learning algorithm, if there exists a positive integer
K ≥ 2 and a sequence of action–state pairs {(ai, xi+1), 2 ≤ i ≤ K },
where ai ∈ A, xi+1

∈ X, 2 ≤ i ≤ K , such that

(i) P(a2; x2, x3)P(a3; x3, x4) · · · P(aK ; xK , xK+1) > 0;

(ii) if ak−1
= ak for some integer k ∈ [1, K ), then ak+1

∈

D(ak, xk+1);

(iii) (aK , xK+1) is an RSE,

then the algorithm converges to some RSE almost surely, by which
we mean that P{τ < ∞} = 1, where τ := min{t ≥ 2 :

(at , x(t+1)) is an RSE}, and, at the same time, that a(τ+t)
= aτ ,

x(τ+t)
∈ X(aτ

|x(τ+1)) for t ≥ 1.

Proof. For convenience, let

ω(t) := [xt , at , xt+1, at+1, xt+2
]
T , ∀t ≥ 0,

unless elsewhere stated. The assumptions imply that, for any
fixed initial state ω(0) = [x0, a0, x1, a1, x2]T ,

Pr{ω(K − 1)|ω(0)} > 0.

From the transition probability of {ω(t)} and that (aK , xK+1) is an
RSE, it follows that

Pr{ω(K + 1) = [xK+1, aK , xK+2, aK , xK+3
]
T

|ω(K − 1) = [xK−1, aK−1, xK , aK , xK+1
]
T
} > 0,

where xK+2, xK+3
∈ X(aK |xK+1).

Thus,

Pr{ω(K + 1) = [xK+1, aK , xK+2, aK , xK+3
]
T
|ω(0)} > 0.

Therefore, the algorithm can reach an RSE from any state ω(0) ∈

Ω with positive probability. □

Lemma 18. Consider a state-based game. Suppose that the follow-
ing assumptions hold:

(i) P̄ is irreducible;

(ii) there exists an action a∗
∈ A and a state x∗

∈ X such that
(a∗, x∗) is an RSE;

(iii) P(a; x, x) > 0 for all a ∈ A and x ∈ X.

Then for any initial state x ∈ X, the algorithm converges to some
RSE class a.s.

Proof. It suffices to validate the conditions in Lemma 17 hold.
(i) For any fixed initial state [x0, a0, x1, a1, x2], if a0 ̸= a1, and

(a1, x2) is an RSE, then the desired sequence of action–state pairs
is obtained when we let a2 = a1. If (a1, x2) is not an RSE but
x2 ∈ X(a∗

|x∗), then let a2 = a∗, and the desired sequence is
obtained too.

Now assume a0 ̸= a1, that (a1, x2) is not an RSE, and x2 ̸∈

X(a∗
|x∗). From assumption (i), it follows that, for x2 ∈ X , there

exists a positive integer K1 ≥ 3 such that

P̄(x2, x3)P̄(x3, x4) · · · P̄(xK1−1, xK1 ) > 0,
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where xi ̸= x∗, 2 ≤ i < K1, and xK1 = x∗. The definition
of P̄ implies that there exists a sequence of action–state pairs
{(ai, xi+1), 2 ≤ i < K1} such that

P(a2; x2, x3)P(a3; x3, x4) · · · P(aK1−1
; xK1−1, x∗) > 0,

where xi ̸= x∗, 2 ≤ i < K1. Let aK1 = a∗.
Without loss of generality, suppose that (ai, xi+1) is not an RSE

for all 2 ≤ i < K1. Otherwise let K̃1 := min{2 ≤ i < K1 :

(ai, xi+1) is an RSE} and consider the sequence {(ai, xi+1), 0 ≤ i ≤

K̃1}.
Suppose that there exists some integer k ∈ [1, K1) such that

ak−1
= ak but ak+1

̸∈ D(ak, xk+1). Denote k̂ := 1+max{t ∈ [0, k−

1) : at ̸= ak−1
}. The assumption a0 ̸= a1 implies that k̂ ≥ 1. Insert

an action ãi ̸= ai between ai and ai+1, k̂ ≤ i < k. In fact, ãi, k̂ ≤

i < k, can be the same action vector. Assumption (iii) ensures that

P(ak̂; xk̂, xk̂+1)P(ãk̂; xk̂+1, xk̂+1)P(ak̂+1
; xk̂+1, xk̂+2) · · ·

P(ak−1
; xk−1, xk)P(ãk−1

; xk, xk)P(ak; xk, xk+1) > 0.

The condition (ii) in Lemma 17 is satisfied for this new sequence
of action–state pairs, and the desired sequence is obtained in this
way.

(ii) If a0 = a1, and (a1, x2) is an RSE, then let a2 = a1 and
x3 ∈ X(a1|x2).

(iii) If a0 = a1, but (a1, x2) is not an RSE, then, according to the
learning rule, one can choose a2 ̸= a1. By applying the argument
above to (x1, a1, x2, a2, x3), we can obtain the desired sequence of
action–state pairs. □

Lemma 19. Consider a state-based game. Suppose that X = X∗.
Then for any initial state x ∈ X, the algorithm converges to some
RSE class a.s.

Proof. (i) For any fixed initial state [x0, a0, x1, a1, x2], if a0 ̸= a1,
and (a1, x2) is an RSE, then the desired sequence of action–state
pairs is obtained when we let a2 = a1. Denote by [a∗, x∗

] an RSE.
If x∗

∈ X(a∗
|x2), then let aτ

= a∗, τ ≥ 2, and the desired sequence
is obtained too.

(ii) If a0 ̸= a1, and (a1, x2) is not an RSE, and that x2 ̸∈ X(a∗
|x∗).

As X = X∗, then for any x ∈ X , there exists an action b∗
∈ A∗, such

that [b∗, y∗
] is an RSE, and y∗

∈ X(b∗
|x2). Then let aτ

= b∗, τ ≥ 2,
and the desired sequence is obtained too.

(iii) If a0 = a1, and (a1, x2) is an RSE, then let a2 = a1 and
x3 ∈ X(a1|x2).

(iv) If a0 = a1, but (a1, x2) is not an RSE, then, according to the
learning rule, one can choose a2 ̸= a1. By applying the argument
above to (x1, a1, x2, a2, x3), we can obtain the desired sequence of
action–state pairs. □

Lemma 20. Consider a state-based game. Suppose that X ̸= X∗

and the following assumptions hold:
(i) for every recurrent class R̄ of P̄ , there exists an action a∗

∈ A
and a state x∗

∈ R̄ such that (a∗, x∗) is an RSE;
(ii) P(a; x, x) > 0 for all a ∈ A and x ∈ X.
Then for any initial state x ∈ X, the algorithm converges to some

RSE class a.s.

Proof. From the proof of Lemma 18, it suffices to show that the
conditions in Lemma 17 still hold when a0 ̸= a1, and x2 is a
transient state of P̄ . If there exists an action a∗

∈ A such that
(a∗, x2) is an RSE, then let a2 = a∗ and the desired sequence is
obtained. Otherwise, since x2 is transient for P̄ , we know that
there exists a positive integer K1 ≥ 3 and a recurrent state of
P̄ , x̃, such that

P̄(x2, x3)P̄(x3, x4) · · · P̄(xK1−1, xK1 ) > 0,

where xi ̸= x̃, 2 ≤ i < K1; xK1 = x̃; (ã, x̃) is an RSE for some
ã ∈ A. The definition of P̄ implies that there exists a sequence of

action–state pairs {(ai, xi+1), 2 ≤ i < K1} such that

P(a2; x2, x3)P(a3; x3, x4) · · · P(aK1−1
; xK1−1, x̃) > 0,

where xi ̸= x̃, 2 ≤ i < K1. Let aK1 = ã.
We can obtain the desired sequence by applying the same

argument in Lemma 18. □

Summarizing Lemmas 19 and 20, we conclude that for any
initial state x ∈ X , the algorithm converges to some RSE class
a.s. when the reachable condition is satisfied.
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