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Abstract: In this paper, we propose a stochastic bounded confidence model. At every time slot, each individual receives an
external social signal which is the average of opinions of its neighbors. Then agents compare the signals with their own personal
biases which are defined as the initial values that ones hold. With positive probability, the agents either accept the opinion or
persuade themselves with the help of personal prejudices. The probability of acceptance is reversely proportional to the opinion
discrepancy between the signal and the bias. The model is modified as a continuous opinions discrete actions (CODA) model
and thus is a Markov chain taking values on a finite state space. It is verified that the chain is aperiodic and finally converges
in distribution to some invariant measure. The classification of states shows that the influences of distant opinions will boost
consensus while the presence of personal biases promote clustering. The model also combines DeGroot model with Friedkin-
Johnson model as well, by using a bounded confidence framework.
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1 Introduction

Opinion dynamics is a booming field endeavoring to

model and interpret processes of social influence and attitude

change with the help of mathematical or simulation methods

[1, 2]. Because of potential applications in economics, social

sciences and management [3–5], study on opinion formation

has attracted attention of researchers from a variety of do-

mains.

Some investigators believe that the understanding of inter-

personal influences is the first step to answer the community

cleavage problem which is one of the most crucial conun-

drums of social sciences [3, 6]. This problem is also known

as Abelson’s diversity puzzle [7], i.e., what assumptions are

fundamental for models to generate not only agreements but

also cleavage phenomena of opinion.

Opinion dynamics models can be mainly categorized into

three classes according to their social psychological back-

grounds [1]. Assimilative influence models presuppose so-

cial structural topologies of individuals. Agents exchange

views with their “neighbors”, namely, people who have di-

rect contact with the former. French-DeGroot model [8, 9]

is a classic example where individuals update their opinions

as an average of neighbors’ views. For DeGroot model,

the group will reach a consensus if and only if the net-

work is quasi-strongly connected [2]. However, the clus-

tering behavior can only be generated when there are multi-

ple strongly connected components, which is not a satisfac-

tory solution to Abelson’s puzzle. A successful modification,

which is called Friedkin-Johnson model in the literature, is

to consider the group’s history [2, 3]. In other words, indi-

viduals take their initial views that represent their personal

interest into account when updating.

The second category are bounded confidence models,

which are also referred to as models with similarity bias
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(2016YFB0901902) and the National Natural Science Foundation of China

(61573345).

[1]. In such models, e.g., Deffuant-Weisbuch model [10]

and Hegselmann-Krause model [11], the similarity of peo-

ple determines whether they will influence each other or not.

The major assumption is that people who hold close opin-

ions feel like each other, which is called homophily [12].

Because of the simple assumptions, they have been widely

studied in different fields [1, 2, 6]. But these models have

several deficiencies, which will be discussed later.

Group polarization [13] is a special phenomenon in social

psychology and cannot be predicted by neither of the above

two classes of models. And thus belief evolution models

over signed networks [1, 14, 15] are proposed and well in-

vestigated. Here individuals keep their opinions away from

each other when they have repulsive connections. However,

there is few empirical evidence for repulsive influence [1]

and there are models without negative links which can also

generate polarization phenomenon [16]. For other kinds of

opinion dynamics models, one may refer to [1, 6].

It is worth noting that agents in bounded confidence mod-

els always ignore distant views, which has been widely crit-

icized [6, 16]. As a matter of fact, the behavior pattern will

change drastically when releasing this assumption. Specifi-

cally speaking, the existence of only a tiny probability that

individuals can be influenced by faraway views will lead to

a significant decrease of opinion clusters [6]. This modifi-

cation of update rule is called a smooth confidence bound

[6, 17, 18]. Another problem is the clustering robustness

clustering of bounded confidence models. It is verified

that fragmentation of Hegselmann-Krause model will van-

ish when arbitrarily small noise exists, and endogenous dif-

ferences, e.g., personal bias or group’s history, may account

for the clustering phenomenon [19].

Therefore, we propose a new model in this paper consid-

ering smooth confidence bounds, influences of distant opin-

ions and individual prejudices. Although there are bounded

confidence models with prejudices [20, 21], they do not in-

clude the effects of remote views. In our model, individuals

are allowed to be influenced by distinct opinions through a
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predefined structural topology. The model is put forward in

a stochastic bounded confidence framework and agents can

either accept a discussion outcome or persuade themselves

with their biases with positive probabilities.

Our novel model establishes a connection between assim-

ilative influence models and similarity bias models. More

specifically, when the confidence tendency function is heavy

tailed, the behavior of the model will be more similar to

a discrete-state DeGroot model. On the other hand, when

the tail of the tendency function is thin, opinion cluster-

ing, which is a common phenomenon of Friedkin-Johnson

model, will take place with high probability. From this point

of view, the proposed model partly combines the DeGroot

model and Friedkin-Johnson model using a bounded confi-

dence framework. The stochastic stability of the model is

obtained and the result also confirms that social influences

of distant views boost consensus while the existence of per-

sonal bias promotes clustering. Unlike bounded confidence

models, our model’s behavior won’t change a lot when ran-

dom noise is added to the system.

The rest of the paper is arranged as follows. In section

2, some preliminaries and notations are given and our novel

model will be proposed in section 3. Main results can be

found in section 4 and numerical simulations are in section

5. Section 6 concludes the paper.

2 Preliminaries and notations

Let G = (V, E) represent a simple graph, where

V is the set of agents and E is the set of edges be-

tween pairs of agents. A sequence of consecutive edges

{(i, k1), · · · , (kl, j)} is called a path between i and j. We

say that i and j are connected if there is a path between them.

A graph is referred to as connected if every pair of agents is

connected. Denote Ni = {j ∈ V : (i, j) ∈ E} to be the

neighbor set of i. Let W be the adjacent matrix of G, that is,

Wij =
1

|Ni| if (i, j) ∈ E and Wij = 0 otherwise.

Define the length of the shortest path between i and j to

be the distance d(i, j) between these two agents. Define the

diameter of a connected graph G as d(G) := max
i,j∈V

{d(i, j)},

that is, the longest distance in G.

A stochastic process {X(t), t ≥ 0}, taking values on a

countable state space X , is said to be a Markov chain if

P{X(t) = xt|X(t − 1) = xt−1, · · · , X(0) = x0} =
P{X(t) = xt|X(t − 1) = xt−1}, where t ≥ 1 and

x0,x1, · · · ,xt ∈ X . The process {X(t)} is a time-

homogeneous Markov chain if the probability P{X(t+1) =
x1|X(t) = x0} depend only on the values of x0 and x1, and

are independent of the time slot. For a time-homogeneous

Markov chain, we write P(x,y) = P{X(1) = y|X(0) =
x} as the transition probability from state x to state y and

Pt(x,y) = P{X(t) = y|X(0) = x} as the t-step transition

probability from state x to state y.

If there exists t ≥ 1 such that Pt(x,y) > 0 we say that y
is reachable from x. For a state x ∈ X define τx = inf{t >
0 : X(t) = x} to be the first return time to x. The state x is

said to be recurrent if P{τx < ∞|X(0) = x} = 1. We call

a state x is positive recurrent if Ex{τx} < ∞.

In the following sections, we use bold lower case letters

to denote vectors, for example, x = (x1, x2, · · · , xn)
T . Let

1 be the vector whose all entries are 1. Define rounding

functions �x� = min{y ∈ Z : x ≤ y} and �x	 = max{y ∈
Z : y ≤ x} for x ∈ R. For a matrix A, denote its i-th row as

A(i).

3 Problem formulation

We propose a stochastic bounded confidence model [17]

and restrict it to dynamics in Z to avoid technicalities. In

fact, there are a variety of models assuming the opinion is

nominal or discrete [1], e.g., voter model [22]. A discrete

belief may represent a choice from several options or a rat-

ing for a movie, product, etc [17]. Our model can also

be regarded as a continuous opinions and discrete actions

(CODA) model where discrete actions (or views) are re-

vealed and observed but everyone carries a continuous opin-

ion indeed [23].

Let V = {1, 2, . . . , n} be the set of agents. Hence graph

G = (V, E) define the underlying social network. Denote the

opinion of agent i at time t as xi(t) and let x(t) be the opin-

ion vector at time t. At each time, agents in V update their

states independently of each other and of previous updates.

To be specific, agent i follows the rule below.

Xi(t+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r(Si(t))

with probability f
(|Si(t)− ui|

)
,

r
(
(1− h)Si(t) + hui

)
with probability 1− f

(|Si(t)− ui|
)
,
(1)

where Si(t) =
∑

j∈Ni

1

|Ni|xj(t) is the external social signal;

h ∈ [0, 1] is the confidence index of agents; r(·) is a ran-

dom rounding function with P{r(x) = �x�} = P{r(x) =

�x	} =
1

2
for x ∈ R; f(·) : R+ ∪ {0} → [0, 1] is a nonin-

creasing tendency function and 0 < f(x) < 1 when x > 0;

and {ui, 1 ≤ i ≤ n} is a set of fixed integers representing

personal biases.

The probabilities with which the rounding function r(x)
takes ceiling and flooring respectively can be defined to be

related to x but there is no difference as long as both of them

have positive probabilities. The real function f(·) in (1) can

be considered as one’s tendency to accept others’ opinion [6,

17], since the smaller |Si(t)−ui| is, the larger the probability

for an agent to accept its neighbors’ views becomes. On the

contrary, if |Si(t) − ui| is large, it is more likely that it will

persuade itself to maintain its own standpoint (ui for agent

i).
Intuitively, after a discussion, every individual has to de-

cide whether to accept the result or not. If the result is close

to one’s priori prejudice, then the agent will be more likely

to take the belief as its own. However, if not, it will modify

the opinion with its bias. Here one can find two differences

from the classic bounded confidence models. One is that if

an agent decides not to accept an opinion, it will be partly

influenced by the opinion rather than adhere to its own. This

update rule is not uncommon [20, 21]. The other is that in

classic models, the basis for judging similarity is the current

state Xi(t) rather than ui. But since the introduction of in-

dividual prejudice, it is more reasonable that personal bias

could have a greater impact on an agent.
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Note that once {ui} is selected, {X(t)} is bounded. Thus

denote u := max
1≤i≤n

ui, u := min
1≤i≤n

ui and Δu := u−u, with-

out loss of generality, one could assume that u ≤ Xi(0) ≤ u,

1 ≤ i ≤ n. We further denote Zu := Z ∩ [u, u] and thus

X(t) ∈ (Zu)
n, t ≥ 0.

The model (1) is also related to two models in the liter-

ature, i.e., DeGroot model [8] and Friedkin-Johnson model

[3]. It is easy to see that the first kind of update rule in (1) is

a homogeneous DeGroot model:

x(t+ 1) = Wx(t), t ≥ 0, (2)

and the second is a homogeneous F-J model:

x(t+ 1) = ΛWx(t) + (In − Λ)u, (3)

where u = x(0) and here Λ = (1− h)In. The difference is

that both update rules in (1) are in discrete state space.

4 Main Results

4.1 Classification of states
From section 3, we know that (1) is a discrete-time

Markov chain with finite states. So the first step is to cat-

egorize the states of (1). Since the update rule of our model

is related to DeGroot and Friedkin-Johnson model, the equi-

libriums of the latter two models may play a crucial rule in

our analysis. From now on, we assume that {ui} is fixed and

u−u ≥ 1, therefore every conditions in (1) takes place with

probability at least
1

2
[f(u−u)∧(1−f(0))] > 0 (Here there

is only one exception, that is, |Si(t) − ui| = 0. But when

this happens, the results of both update rules are the same).

The following Lemma shows that states c1 are aperiodic.

Intuitively, it means that when a crowd has reached a con-

sensus, the situation can last for several steps with positive

probability.

Lemma 1. P(c1, c1) > 0, ∀c ∈ Zu.

Proof. Suppose X(0) = c1, for some c ∈ Zu, then

Si(0) = c, ∀i ∈ V . Thus with probability f(|c − ui|) > 0,

Xi(1) = r(Si(0)) = r(c) = c, ∀i ∈ V , which implies that

P(c1, c1) > 0.

Lemma 2. For any state x ∈ (Zu)
n, ∃t > 0, such that

Pt(x, c1) > 0, for some c ∈ Zu.

Proof. Let Smax(t) := max
1≤i≤n

Si(t), Smin(t) := min
1≤i≤n

Si(t)

and X (t) := max
1≤i≤n

Xi(t) − min
1≤i≤n

Xi(t). Suppose X(0) =

x and X (0) ≥ 1.

If Smax(0)− Smin(0) ≤ 1, then P(x, �Smax(0)	1) > 0.

Provided that Smax(0)−Smin(0) > 1, and either Smax(0)
or Smin(0) is not an integer, then with positive probability,

X (1) = �Smax(0)	 − �Smin(0)� < Smax(0) − Smin(0) ≤
X (0).

If rather, Smax(0) − Smin(0) > 1 and both Smax(0)
and Smin(0) are integers, then with positive probability,

Xi(1) = �Si(0)	, ∀i ∈ V . For such states, let X (1) :=
{i ∈ V : Xi(1) = Smax(0)} and X (1) := {i ∈ V :
Xi(1) = Smin(0)}, we have that ∃l ∈ X (1), ∃k ∈ Nl such

that Xk(1) < Smax(0). Otherwise, ∀l ∈ X (1), ∀k ∈ Nl,

Xk(1) = Smax(0) holds, which leads to V = X (1). That is

because G is connected and X (1) �= ∅. This contradicts with

X (1) �= ∅. Thus,

Sl(1) =
1

|Nl|
∑
j∈Nl

xj(1) <
1

|Nl|
∑
j∈Nl

Smax(0) = Smax(0).

Therefore, with positive probability, Xi(2) = �Si(1)	 and

at the same time, Xl(2) < Smax(0) for all l ∈ X (1) with

some k ∈ Nl such that Xk(1) < Smax(0). Repeat this pro-

cedure and we have Xi(d(G) + 1) < Smax(0), ∀i ∈ V , with

positive probability, where d(G) is the diameter of graph

G. Hence, P{X (d(G) + 1) < X (0)|X(0) = x} > 0,

that is, Pd(G)+1(x, z) > 0 for some z ∈ (Zu)
n such that

max{zi} −min{zi} < X (0).
Since X (t) are integers, by Lemma 1, we have

Pt0(x, c1) > 0 for some c ∈ Zu and t0 = (d(G) +
1)X (0).

Lemma 2 shows that whatever state the model (1) starts

with, there is a positive probability that the system reaches a

consensus for finite time. Note that this may not be true for

continuous opinion models. The next Lemma tells us that, if

h is small enough, then the states in the consensus vector set

{c1 : c ∈ Zu} are reachable from each other, which makes

itself play a crucial role in classifying states of (1).

Lemma 3. Assume that h ≤ 1

Δu
, then the states in the set

{c1 : c ∈ Zu} are reachable from each other.

Proof. It suffices to verify that (u + 1)1 is reachable from

u1. Let X(0) = u1 and l ∈ V such that ul = u. Then

with positive probability, Xl(1) = �(1 − h)Sl(0) + hu� =
�u + h(Δu)� = u + 1, while Xk(1) = �Sk(0)� = um,

k �= l. Further we have P{Xk(2) = �Sk(1)� |X(1) = x} =

P{Xk(2) = u + 1|X(1) = x} ≥ 1

2
f(|W kx − uk|), ∀k ∈

Nl. Thus recursively, by Lemma 1, Pt0(u1, (u + 1)1) > 0,

where t0 = d(G) + 1.

Intuitively, this lemma means that if every agent is not so

stubborn, then it is possible for the chain to reach every con-

sensus state. But, in fact, this phenomenon happans because

of the existence of personal prejudice.

For Markov chains with finite states, there must exist some

positive recurrent class and all recurrent states are positive

[24]. From Lemma 2, we know that for every positive recur-

rent class R of (1), there is some c ∈ Zu such that c1 ∈ R.

Moreover, by Lemma 1, such recurrent class is aperiodic.

Thus the following theorem holds:

Theorem 1. For fixed {ui}, the Markov chain (1) has at
least one positive recurrent class and all positive states are

aperiodic. Moreover, if h ≤ 1

Δu
, then (1) has only one

positive recurrent class.

Now we discuss the classification of the limit point of

Friedkin-Johnson model (3). When W is strongly con-

nected, we know that limt→∞ x(t) = u∗, where u∗ =
(In − ΛW )−1(In − Λ)u. But the entries of u∗ need not

be integers, so let U := {x ∈ Zu : xi = �u∗
i � or �u∗

i 	} and

we have

Proposition 1. For any state x ∈ (Zu)
n, ∃t > 0, such that

Pt(x, z) > 0 for some z ∈ U .
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Proof. Denote X̃i(t + 1) = (1 − h)Si(t) + hui and

M (y) := max
1≤i≤n

|yi − u∗
i |, i ∈ V . For fixed initial value

X(0) = x, because

X̃(1)− u∗ = ΛW (X(0)− u∗),

we have that

|X̃i(1)− u∗
i | ≤ (1− h)M (X(0)).

If |X̃i(1)− u∗
i | < 1, since

Xi(1) ≤ �X̃i(1)� < X̃i(1) + 1 < u∗
i + 2;

Xi(1) ≥ �X̃i(1)	 > X̃i(1)− 1 > u∗
i − 2,

we know that |Xi(1) − u∗
i | ≤ 1. On the other hand, if

|X̃i(1) − u∗
i | ≥ 1, then with positive probability, |Xi(1) −

u∗
i | ≤ |X̃i(1) − u∗

i |. As a result, P(x,y) ≥ p∗ > 0, where

p∗ is a constant independent of x and y, and x, y are such

that M (y) ≤ 1 ∨ (1 − h)M (x). Therefore, there exists

large enough t0 > 0 and some state z ∈ (Zu)
n satisfying

Pt0(x, z) > 0 with M (z) ≤ 1, i.e., |zi − u∗
i | ≤ 1, ∀i ∈ V .

Similar to (4.1), we have P(z, ũ) > 0 for some ũ ∈ U ,

which completes the proof.

One of the important properties of our concern is the

model’s robustness to noise. But as we can see above, the

reachability of the consensus vector set {c1 : c ∈ Zu} and

the set U := {x ∈ Zu : xi = �u∗
i � or �u∗

i 	} is guaranteed

by the formulation of the model. Suppose that the update

of agents in (1) is added with some independent noise ni(t)
taking values in [−Δu,Δu] and P{ni(t) = 0} > 0. And

further assume the chain is bounded in [u, u], then it is not

hard to see that the conclusions above still hold.

To end this section, a few examples are given to show that

actually not all states in (Zu)
n are positive when Δu is large

enough:

Proposition 2. Suppose Δu ≥ 2n. If there exists agents i
and j with d(i, j) ≤ 2, ui < u and uj > u, then states in set
S := {x ∈ (Zu)

n : xi = u, xj = u} are not reachable from
any other states in (Zu)

n.

Proof. Provided that for some time t > 0, X(t) reaches set

S at the first time, then Xi(t − 1) �= u or Xj(t − 1) �= u.

From the update rule (1) and the assumptions, Si(t − 1) ≥
u − 1, Sj(t − 1) ≤ u + 1. Thus, Xk(t − 1) ≥ u − n,

Xl(t−1) ≤ u+n, k ∈ Ni, l ∈ Nj and the equalities cannot

hold at the same time. Since d(i, j) ≤ 2, i and j share a

neighbor m satisfying u − n ≤ Xm(t − 1) < u + n or

u − n < Xm(t − 1) ≤ u + n, which is impossible because

from the assumption, u− n ≥ u+ n.

Proposition 3. Suppose Δu > 2 and G is complete graph.
If there exists agents i and j with ui < u and uj > u, then
states in set S := {x ∈ (Zu)

n : xi = u, xj = u} are not
reachable from any other states in (Zu)

n.

Proof. Following the notations in the proof of Proposition 2,

we have that Si(t − 1) ≥ u − 1, Sj(t − 1) ≤ u + 1. Since

V = Ni, ∀i ∈ V , u+1 < u− 1 ≤ Si(t− 1) = Sj(t− 1) ≤
u+ 1, which is impossible.

4.2 Convergence of the distribution and expectation
From Theorem 1, we have the following result on the sta-

tionary distribution of (1):

Theorem 2. For fixed {ui}, the Markov chain (1) converges

in distribution to some invariant measure. If h ≤ 1

Δu
, then

the invariant measure is unique.

Corollary 1. For fixed {ui} and fixed initial value X(0) =
u, the model (1) converges in distribution to an invariant
measure.

The behavior of Markov chain (1) can be partly illustrated

by the expectation, and it is shown that the limit of expecta-

tion depends on the tendency function f and the limit distri-

bution.

Proposition 4. limt→∞ E{X(t)} =
∑

x∈(Zu)n
g(x)μ(x),

where g(x) is a deterministic vector function dependent only
on x, and μ is an invariant measure of (1) which may depend

on the initial distribution if h >
1

Δu
.

Proof. From update rule (1), it follows that

E{Xi(t+ 1)}
=

∑
y∈Zu

yP{Xi(t+ 1) = y}

=
∑
y∈Zu

∑
x∈(Zu)n

yP{Xi(t+ 1) = y|X(t) = x}P{X(t) = x}

=
∑

x∈(Zu)n

∑
y∈Zu

yP{Xi(t+ 1) = y|X(t) = x}P{X(t) = x}

=
∑

x∈(Zu)n

P{X(t) = x}·
[
1

2
f(|W (i)x− ui|)(�W (i)x�+ �W (i)x	)+
1

2
(1− f(|W (i)x− ui|))(�(1− h)W (i)x+ hui�

+�(1− h)W (i)x+ hui	)
]

:=
∑

x∈(Zu)n

gi(x)P{X(t) = x},

It follows from Theorem 2 that P{X(t) = x} → μ(x), as

t → ∞, where μ is an invariant measure of (1) which may

depend on the initial distribution if h >
1

Δu
. Whence the

conclusion follows.

From Proposition 4, we know that the heavier tailed the

tendency function f is, the more similar the limit expectation

behaves to the corresponding DeGroot model. On the con-

trary, thin tailed tendency f leads to F-J model-like behavior.

This phenomenon is also illustrated in the next section.

5 Numerical Simulations

In this section, we run several numerical simulations to

demonstrate results in the previous section. Firstly, to show

the reachability of consensus vector set {c1 : c ∈ Zu}, a

sample path of a 3-agent network is showed in Fig. 1, where
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u = 4, u = 1 and h = 0.2 <
1

3
. The aperiodicity of such

states can also be found in this figure.
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Fig. 1: Demonstration of the reachability and aperiodicity of

{c1 : c ∈ Zu}. The black circles represent points in that set.

Next we show the relation between the behavior of the

model (1) and the acceptance tendency function f . We use a

6-agent network whose topology is shown in Fig. 2 and let

u = 4, u = 1 and h = 0.2 <
1

3
. For different probabil-

ity of acceptance function, we choose f1(x) =
1

(x+ 1)0.1
,

f2(x) =
1

x+ 1
and f3(x) =

1

(x+ 1)10
, whose graphs are

in Fig. 3. Note that f1 is heavy-tailed while f3 is thin-tailed.

The approximations of the marginal stationary distribu-

tions of an agent i with prejudice ui = 4 for f1, f2, f3,

f4 ≡ 0 and f5 ≡ 1 are shown in Fig. 4(a), 4(b), 4(c),

5(a) and 5(b) respectively. It is worth noting that when

f ≡ 0, the model (1) is a discrete-state Friedkin-Johnson

model while when f ≡ 1, the model (1) is a discrete-state

DeGroot model.

Fig. 2: A social network with 6 agents

Finally, the ergodic property of model (1) is shown in Fig.

6, that is,
1

n

∑n
t=1 X(t) converges a.s.

6 Conclusion

In this paper, we propose a opinion model with smooth

confidence bound maintaining clustering phenomenon. The

model established connections among bounded confidence

models, DeGroot model and Friedkin-Johnson model. The

stochastic stability of model (1) is obtained, which shows

that for a homophily model, the influence of distant views

may alter the behavior of the system a lot, but clustering can
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Fig. 3: The acceptance tendency functions
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Fig. 4: The approximations of the marginal stationary distri-

butions of an agent i with prejudice ui = 4 for (a) f1, (b) f2,

and (c) f3.
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Fig. 5: The approximations of the marginal stationary distri-

butions of an agent i with prejudice ui = 4 for (a) f4 ≡ 0
and (b) f5 ≡ 1
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Fig. 6: The ergodic property of model (1).

still take place with the presence of personal bias. Further re-

searches may focus on the effects of different tendency func-

tions, detailed results for special kinds of graphs and appli-

cations to the real world opinion formation processes.
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