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Abstract— We study a random opinion dynamics model over
signed networks with two different topological assumptions,
that is, strongly connected and quasi-strongly connected. The
model is proposed in a gossip algorithm form for simplicity but
can be extended to a general one: at each time, a subgraph of the
underlying interaction graph is selected and agents exchange
their opinions based on this selected subgraph. It is shown that
when the interacting graph is strongly connected, structurally
balance is crucial for opinion clustering. However, when the
interacting graph is quasi-strongly connected, the structurally
balance assumption of the rooted graph is not enough for the
convergence of the system and agents that are not roots may
end in fluctuation.

I. INTRODUCTION

In the past decades, a great deal of research has been
conducted on network dynamics from diverse disciplines,
and various of topics have been studied, for example, the
evolvement of network structures, epidemics in networks,
voting models and so on [6], [16].

Opinion dynamics, which attempts to figure out the con-
sequences of opinion formation processes among a group of
interacting agents [10], is also one of these booming fields.
The research dates back to the well-known model proposed
by DeGroot [4], where individuals update their opinions as
convex combinations of their own and others’ opinions and
finally reach consensus. In fact, opinion-behavior dynamics
is relate to the fundamental problem of sociology, i.e., “the
coordination and control of social systems” [9]. Recent
inquiries on protocols for consensus and synchronization in
multi-agent networks [12], [19] also provide lots of mathe-
matical models and tools for the study of opinion dynamics.
For instance, gossip algorithms, which are commonly used
in engineering [7], could also be used to describe social
influence processes taking place in a random way [1].

However, in reality, it is more common that beliefs of
individuals fail to reach consensus but end in disagreement,
clustering [18], and even fluctuating [1]. This gives rise to
the community cleavage problem, which is central to the
coordination and control of social systems [9]: to reveal the
mechanisms that fail to generate consensus.

At present there are several explanations for such phe-
nomenon. The first is an opinion dynamics model with
stubborn agents [9]: an individual is influenced by not
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only others but also its original opinion. The second is the
class of confidence bound models, e.g. [10], in which only
individuals whose opinions are close enough exchange their
beliefs.

Another attempt is the introduction of signed networks
[6] or antagonistic interactions [2]. The concepts of signed
networks and structurally balanced theory were first brought
in by Heider and further generalized by Cartwright and
Harary to illustrate the positive and negative relation-
ships among groups of people [3]. Indeed, the coopera-
tive/antagonistic interactions can represent the two differ-
ent, activating/inhibitive or trustful/mistrustful relationships
which can often be found in real world systems [20].

Article [2] proposed a continuous-time model in which
individuals may reach bipartite consensus, i.e., the agents
split into two groups holding opposite values, instead of
ordinary consensus. The fundamental digon sign-symmetry
assumption in [2] can be removed, and relevant results have
been obtained by [13]. As a matter of fact, continuous-
or discrete-time Altafini-type protocols over static or time-
varying signed networks have been widely investigated (see
[20] for a review). But one should note that, unlike the two
former classes of models which both have solid experimental
or empirical evidence [9], [10], there has been few evidence-
based research that focuses on the dynamics over signed
networks.

Since interpersonal influences do not occur simultaneously
and sequences of influences among people are complex [9],
randomness also takes an important role in opinion dynam-
ics. So no doubt random dynamical models over signed
graphs have also been studied [17], [20], [21], [22], [23],
and two different types of interactions along the negative
links have been distinguished, i.e., the opposing negative
dynamics [2], [21] and the repelling negative dynamics [22].
Intuitively, the former update rule makes agents take the
opinions of negative neighbors into account, while the latter
only makes the relative position of two individuals’ opinions
with negative ties farther away than before. [21] and [23]
investigate models based on these two rules respectively and
it is found that the two types of interaction rules can lead to
extremely different behaviors.

In this paper, we will analyze an opinion formation model
over signed networks based on opposing negative rules. For
simplicity, we propose it in a gossip form, but from the
proofs of Theorems, the update rule in this paper can be
generalized and the extended model could be regarded as
a description of a general heterogeneous random opinion
formation process (see Remark 1 and note that the model
in [21] is a homogeneous one). Besides, since the models
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in [17], [20], [21], [22], [23] are all linear, it may be
possible to analyze the linear random models over signed
networks from a random matrices perspective and this paper
has made an attempt to connect models over signed networks
with ordinary stochastic models which have been thoroughly
studied. Thus, we can still obtain convergence conclusions
using results on products of random matrices rather than
sample path arguments, when the joint strongly connected
assumption in [21] fails. It is also discovered that the slightly
weakening of connectedness can lead to new behaviors
for the random model. In this manner, we have a deeper
understanding of dynamics over signed networks.

When a discussion takes place among a small group of
people, we may assume that everyone can influence each
other [9]. But when the group gets larger, a hierarchical
structure, for instance, leaders and followers, could emerge.
Thus we will introduce two different topological assumptions
in this article, i.e., strongly connected and quasi-strongly
connected. It is verified that the model behaviors are not
the same under these two topologies.

The rest of this paper is organized as follows. In section II,
we introduce some notations and preliminaries. The model
and main results are presented in section III and simulations
for illustration are shown in section IV. Section V discusses
the conclusions and ideas for future work.

II. NOTATIONS AND PRELIMINARIES

Denote a simple directed graph (digraph) as G = (V, ),
where V represents the set of nodes (or agents) and £ the
set of arcs. With a slight abuse of notation, define a signed
digraph as a triple G = (V,€,0), where o : £ — {+,—} isa
map that assigns each arc of G a sign. For some property P
for digraphs, we say that a signed digraph Gy = (Vy, o, 00)
has the property P if the digraph (Mo, &) has that property.

An arc from node i to j is denoted by (7, ). A sequence
of consecutive arcs {(i, k1), (k1,k2) -+, (ki—1, ki), (ki,5)}
is called a path from node ¢ to 5. We say that a node j is
reachable from node ¢ if there is a directed path from ¢ to j.
A digraph is referred to as strongly connected if each node is
reachable from any other node. A signed graph (V',&’,0’)
is a subgraph of (V,€,0) if V' CcV, & Cc & and o' =0
on &'

The concept of structurally balanced plays an important
role in analyzing the dynamics over signed graphs [2]:

Definition 1: A signed digraph G is said to be structurally
balanced if there exists a bipartition {V1,Va} of V, where
ViUV, =V and V; NV, = 0, such that (4, j) = +, Vi,j €
V, forl € {1,2} and 0(4,j) = —, Vi € V}, Vj € V\ V), for
I € {1,2}. Tt is called structurally unbalanced otherwise.

It is easy to know that an ordinary digraph can be viewed
as a special case of a structurally balanced signed graph.

Given a square matrix A € R™*", let A;; be the (4, j)-
th entry of A, and p(A) the spectral radius of A. For two
matrices A, B € R™*", write A > 0 if A;; > 0, for all
1<i<mand1<j<n,and A> Bif A— B > 0. The
relations >, <, < are defined similarly.
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A matrix M is said to be nonnegative if M > 0. A
nonnegative matrix M is called stochastic (substochastic) if
M1 = (<)1 and a nonnegative vector « is declared to be a
probability vector, if a”1 = 1, where 1 is the column vector
of ones (1,1,---,1)7. For a matrix A, denote |A| = [|4;;].
If |A|1 = 1, then we say that A is an absolutely stochastic
matrix. Denote the unit vector of corresponding size whose
i-th component is 1 as e;, the identity matrix of size n as I,
and n X m matrix with all entries zero as 0,,,,.

A square matrix A is said to be adapted to a signed
digraph G = (V,&,0), if, for all nondiagonal entries, the
sign of A;; is the same as o(i,j) when (i,5) € &, and
A;; = 0 when (4,j) ¢ €. So for a nonnegative matrix A
and an ordinary digraph G = (V, &), A is adapted to G if
and only if A;; > 0 & (i,j) € €, forall 1 < i,j < n,
1 # j. A stochastic matrix A is called irreducible if there
exists a strongly connected ordinary digraph G to which A
is adapted. For an absolutely stochastic matrix B, we say that
B is irreducible if | B| is irreducible. An absolutely stochastic
matrix A is referred to as structurally (un)balanced if there
exists a structurally (un)balanced signed graph G to which
A is adapted.

A random matrix is a random variable taking values in
the set of n X n matrices. For simplicity of notation, let
{C(t),t > 0} be a sequence of random matrices and [, k be
some nonnegative integers, let

Ck)Ck—-1)---C(), k=>1,
Sok.D) = {1,( JO(k —1)---C(1) ST
and
Gl k) = {i(Z)C(H 1)---C(k), z: ®
III. MAIN RESULTS
A. Problem Formation
Consider a network with agents V = {1,2,--- ,n}, n >

3. Let G = (V,&,0) be the interacting graph without self-
loops, P be a nonnegative matrix adapted to (V,&) with
17P1 = 1, and W be a matrix adapted to (V,€,0) with
-7 <w <11’

For simplicity, we first introduce a discrete-time gossip
model over signed networks as follows. Denote the belief
vector at time ¢ by X (¢), where the k-th component X ()
is agent k’s opinion at time ¢, ¢ > 0 and 1 < k& < n. At each
time slot, edge (i,7) € & is selected with probability p;;,
independently of previous selections, and the agents’ beliefs
update as follows:

Xi(t+1) = (1 = |wiz) X (t) + wi; X;(t)
Xk(t+1):Xk(t), fOI‘]ﬂ?éZ..

In other words, at time slot ¢, only agent ¢ updates its
opinion as a linear combination of agents ¢ and j’s previous
beliefs while others do not update. If G has no negative arcs
and hence is an traditional digraph, then the system becomes
the classical gossip models with update rule (3) (in fact, it
is an asymmetric gossip model as in [7]). Supposing that

3)
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the term (1 — |w;;|) in (3) becomes (1 — wj;;), then (3) is
the model in [22]. If w;; = o > 0 for all w;; > 0 and
w;; = B < 0 for all w;; < 0, then (3) serves as a special
case of [21]. But since update rule (3) can be extended, the
analysis of (3) is not trivial (see Remark 1).

The system (3) can also be rewritten in a compact form:

Xt+1)=WH)X(1), “)

where {W (t),t > 0} is a sequence of i.i.d. random matrices
satisfying:

t>0,

&)

where {W (t)} are random absolutely stochastic matrices and
E{W(0)} is an absolutely stochastic matrix with positive
diagonal entries. The update rule (3) (or (4)) guarantees
the existence of the evolution process and we denote the
probability space capturing all the random components by
(Q,F,P).

Note that although random models in [21], [22], [23], [20]
are all linear and (4) is the compact form of these models,
{W(t)} in these models may not be absolutely stochastic.

It is well known that the dynamics over signed networks
may not reach consensus, but one can define modulus
consensus [17]:

Definition 2: For system (3) with fixed initial value, if
lim; 00 | X;(¢)| = M a.s. for all 4 € V and some nonnegative
M € R, then we say that system (3) achieves modulus
consensus. If M is a nonnegative random variable, then we
say that (3) achieves probabilistic modulus consensus.

P{W(t)=1~- |wz‘j|€ieiT + wijeiejr} = Pij,

B. The Strongly Connected Case

We have the following conclusion if the underlying graph
G = (V,&,0) is strongly connected.

Theorem 1: Suppose G = (V, &, o) is strongly connected.
If W := E{W(0)} is structurally balanced, then for fixed
initial value X (0), system (3) converges and achieves prob-
abilistic modulus consensus; if W is structurally unbalanced,
then for fixed initial value X (0), lim; o, X(¢) =0 a.s.

The following three lemmas are needed to proof Theorem
1, and the proof of Lemma 3 is in the Appendix.

Lemma 1 (Lemma 4.2.5 in [25]): Let W be an irre-
ducible absolutely stochastic matrix with positive diagonal
entries. W is structurally balanced if and only if there exists
a diagonal matrix D satisfying D? = I such that DW D
is nonnegative and D is unique in the sense that if there
exist two diagonal matrices Dy, Do, satisfying D% =1,
D% = I such that D\W Dy, DosW Dy > 0, then D; = D
or D1 = —DQ.

Lemma 2 (Corollary 4.2.1 in [25]): Let W be an irre-
ducible absolutely stochastic matrix with positive diagonal
entries. W is structurally unbalanced if and only if p(W) <
1.

Lemma 3: Let {C(t),t > 0} be a sequence of i.i.d.
random matrices. If for C' := E{C(¢)}, p(C) < 1, then
lim; 00 P (t,0) = 0 a.s., where & (¢,0) is defined in (1).

Proof of Theorem 1: Since W is structurally balanced
and irreducible with positive diagonal entries, by Lemma
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1, there exists a diagonal matrix D, with D? = I, such
that A = DW D is nonnegative. Hence A is an irreducible
aperiodic stochastic matrix. From Perron’s theorem in [11],
1 is the largest eigenvalue of A in absolute value with
multiplicity 1. Let T" be a nonsingular matrix leading A to

the Jordan canonical form TAT ! = A Ol, where A is

0 1
an n — 1 dimensional matrix with all eigenvalues less than

1 in absolute value. Since A is aperiodic, irreducible and
stochastic, there exists a unique probability vector « such
that o A = o from matrix theory. As a result, the last row
in 7 must be ca” with ¢ being a constant. Without loss of

generality, setting ¢ = 1 we have T' = Lz;} and, similarly,

T-1 = [U 1]. Moreover, T1 = 0 and oTT = 0 since
TT—! = I. Define A(t) :== DW(t)D and thus A(t) is a
stochastic matrix.

Let X (t) = TDX(t) for t > 0, then

X(t+1)=TAHT1X(t)
TAWU  TAM1] 5
= ~ X(t
[aTA(t)U aTA(t)1 ®)
TAHU 0] 5
= ~ X(t).
LyTA(t)U 1] ®)
The last equation holds since A(t) is a stochastic matrix and
71 =0. R
Now denote the first n — 1 components of X (¢) by Y'(¢),
the n-th component of X (¢) by X (¢),, and TA(t)U by A(t).
We have
Y (t) = ®4(t,0)Y(0)

and
X(t)n =" X(0) +a" > A@TD4(i — 1,0)Y(0)
=1

Since p(A) < 1, by Lemma 3, lim; o, ® 4(¢,0) = 0
a.s., and consequently, lim; ,, Y'(¢) = 0 a.s. Because of the
independence of {A(t)}¢>0, same as the proof of Lemma
3, it follows that X (t),, converges a.s. to a random variable
Z =aTX(0)+a” %%, A#)U® 5(i—1,1)Y (0). Therefore
limy_oo X(t) = (0 --- 0 2Z)T and limy_,.. DX (t) =
lims_, oo T’lX(t) = Z1 as., which implies that (4) con-
verges a.s. and achieves probabilistic modulus consensus.

When W is irreducible and structurally unbalanced, note
that W has positive diagonal entries. So the conclusion
follows from Lemmas 2 and 3. ]

Remark 1: Theorem 1 is consistent with the classical con-
vergence result of dynamics over signed networks [2] and of
the random counterpart [21]. It should be noted that the proof
of Theorem 1 only requires that {W (¢)} are independent and
have the same expectation. Thus different gossip models,
such as symmetric gossip, synchronous asymmetric gossip,
broadcasting models and so on [7], subject to the opposing
negative rule would also reach modulus consensus as long
as the former condition holds. Moreover, {W (¢)} could take
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values in the set of absolutely stochastic matrices which are
adapted to the subgraphs of G, that is,

P{W(t) = By} = p, (6)

where 1 < k < m for some m. By is absolutely stochastic
matrices with nonnegative diagonal entries and adapted to
some subgraph of G, and pp > 0 with > pr = 1. The
conclusion still holds as long as E{TV ()} is irreducible and
has positive diagonal entries. The intuitive meaning of the
extended model is that, for a crowd of people who can
discuss with each other in small groups, they will reach
modulus (or bipartite) consensus as long as they can receive
opinions of anyone else in the crowd. Of course these
heterogeneous update rules no longer serve as special cases
of the homogeneous model in [21].

C. Quasi-Strongly Connected Case

Quasi-strongly connected (a digraph with a directed span-
ning tree) is also a common topology assumption [13], [15],
and under this assumption we have some conclusions similar
to Theorem 1. Let us first introduce a few definitions and
notations.

If a digraph (V, &) has paths from some node i to every
other node j, then (V, ) is said to have a directed spanning
tree including ¢ as its root. For a signed digraph G with
a spanning tree and m roots, we always sort V such that
Ve ={n—m+1,...,n} is the node set of the roots. The
subgraph G, = (V,,€|y,,0ly,) is called the rooted graph
of G. As a result, if a square matrix W is adapted to a
signed digraph G with a spanning tree, then it always has
the following form:

(7

W= [Wn le] 7

0 W,

where W.,. is adapted to the rooted graph G,.

When the rooted graph is structurally unbalanced, the
system converges to zero a.s.

Theorem 2: Suppose G = (V, £, o) has a spanning tree. If
W, := E{W,.(0)} is structurally unbalanced, then for fixed
initial value X (0), lim; o X(t) = 0 as., where W, is
adapted to the rooted graph of G.

Proof: Since W = E{WW(0)}, the diagonal entries of W

Wi Wm}
0o W,
Thus Lemma 2 guarantees p(W;.) < 1 and Lemma 4 ensures
p(W11) < 1, which implies p(W) < 1. The conclusion
follows from Lemma 3. [ ]

New behaviors of the model may emerge when W, is
structurally balanced:

Proposition 1: Suppose G = (V,&,0) has a spanning
tree.

() If W := E{W} is structurally balanced, then for fixed
initial value X (0), system (3) converges and achieves prob-
abilistic modulus consensus;

(i) If W, := E{W,.(0)} is structurally balanced, then for
fixed initial value X (0), the opinions of agents in the rooted
graph converge and achieve probabilistic modulus consensus.

are positive. Note that I/ has the form W =
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Denote these two limit random variables as M and —M
and without loss of generality suppose M > 0. The other
agents’ beliefs will finally lie in [—M, M]. Moreover, if an
agent ¢ is influenced by both partition of the roots, then
limsup,_, . X;(t) = —liminf, ,. X;(t) = M as.
Proof: When W is structurally balanced, by Lemma 2.3
in [13], there exists a diagonal matrix D, with D? =1, such
Ar A
that A = 0 A
of a digraph root, we know that at least one of the row
sum of Aj; is less than one. So it follows that p(A;1) < 1
by Lemma 4 in the Appendix. Because A, is irreducible

and aperiodic, 1 is the largest eigenvalue of A in absolute
T 13

0 aT} and the rest
of the proof is similar to that of Theorem 1, where T is a
nonsingular matrix leading A to the Jordan canonical form

A
-1 _

TAT' = { 0 1

of A, satisfying al' A, = aT.

When W,. is structurally balanced, from Theorem 1 it
follows that the opinions of agents in the rooted graph
converge and achieve probabilistic modulus consensus. Thus
for fixed € > 0, define S; := inf{t > 0 : || X;(¢)| — M| <
e,Vk € V,.} and S is a finite stopping time.

Since system (3) is bounded and G has a spanning tree,
there exists a fixed integer K (¢) and positive constants p,
such that ||X;(S1 + K)| — M| < 2¢ for all i € V\ V.
with positive probability p.. This is because the model (3)
is an asymmetric gossip model, and we could first choose
the arcs from roots to their neighbors repeatedly after time
S1 such that the states of roots’ neighbors are close enough
to M (this can be done even when |w;;| = 1). Then use
the same selection method recursively. Denote this selection
process as W(S1, S1+K) (actually, it is a product of selected
matrices) and define W(S1 +¢K, S, + (¢+1)K), ¢ > 1, in
the same way. Note that {TW(¢)} are i.i.d. and .S; is a finite
stopping time, so W(S7 + qK,S1 + (¢ + 1)K), ¢ > 0, are
independent and have positive probability (Theorem 4.1.3 in
[5]). By Borel-Cantelli Lemma, we have P{W(S;+¢K, S1+
(¢g+1)K) io.} =1.

Because of the linearity of model (3), || X (t)| — M| < e,
Vk € V, and t > S;. Therefore,

is nonnegative. From the definition

value with multiplicity 1. Let T' =

and « is the unique invariant measure

{limsup | X;(t)| < M + 2¢,Vi € V}
t—o00

2 {|Xi(T)| < M 4 2¢,Vi € V and some T (w)}
2 {[IXk(@)| — M| <&,Vk € Vr,t =2 5]
NW(S1 +¢K,S1 + (¢ +1)K) i.0]}

The second assertion of (ii) follows from that the last set has
probability 1 and the last assertion of (ii) can be obtained in
the same way. [ ]

Under the condition of Proposition 1 (ii), the opinions
of the other agents may not converge, but the expectations
of the opinions converge and will finally lie in the interval
[-E{M},E{M}] by Theorem 2 in [26]. The conclusions
obtained in this section is quite similar to that in [26]: For
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Fig. 1. A sample path of (3) over signed network Fig. 4 (a). The system
reaches probabilistic bipartite consensus.

1.5
r —1
1__1 2| 1
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States of the agents
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0 100 200 300 400 500 600

Time (t)

Fig. 2. A sample path of (3) over signed network Fig. 4 (b). The opinions
of the roots, i.e., agents 1 and 2 converge. Note that the belief of agent 3
ends in fluctuating but lies between agents 1 and 2.

deterministic models, if the underlying graph is static and
has a spanning tree, then the rooted graph reach bipartite
consensus and the opinions of the other agents converge
and are convex combinations of the roots’ opinions [14];
however, if the underlying graph is time-varying, the beliefs
of the other agents may not converge but be bounded by
the limit of roots’ opinions. Also note that, the convergence
results in this section can also be extended to the general
model in Remark 1.

IV. SIMULATIONS

This section is an illustration of section III-C. Consider a
network with 4 agents and different interacting graphs shown
in Fig. 4, one sample path of each system is shown in Fig.
1-3 respectively.

V. CONCLUSION

In this paper, we analyze a gossip model based on op-
posing negative rules as a partial counterpart of the gossip
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Fig. 3. A sample path of (3) over signed network Fig. 4 (c). The opinions
of all agents converge to zero.

3 4

Fig. 4. A signed network with 4 agents. Agents 1 and 2 are roots. For
(a), the network is structurally balanced; for (b), only the rooted graph is
structurally balanced; for (c), the rooted graph is structurally unbalanced.

model based on repelling negative dynamics [22]. Of course,
the original random selection process of this article’s model
serves as a special case of the random graph process of [21]
under certain circumstances, but the former can be extended
to a more general heterogeneous model while the conclusions
still hold. This article can be regarded as an example of
applying results on products of random stochastic matrices
to analyze the dynamics over signed networks, which makes
proofs much simpler ([17]’s efforts focused on deterministic
models). Further work would be to utilize more general
results on products of random stochastic matrices (e.g. [24])
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to release the independent assumption, and use conclusions
on products of random matrices (since the random matrices
in [21], [23] may not be absolutely stochastic) to solve the
remaining threshold problems in [21]. Since the opinion
formation in the real world may not take place over a
strongly or quasi-strongly connected network, other future
work would be to explore the behaviors of random models
over more general topologies, for example, networks with
stubborn agents or strongly connected components.

APPENDIX

Proof of Lemma 3: Since py = p(C) < 1, from the
Jordan canonical decomposition, we have for all £ > 1,
|C*|loe < gk™ 1pk, where || - |o is the maximum row
sum matrix norm and ¢ is a constant depending on C' only.
Note that E{C(t)} = C, thus E{||®c(k — 1,0)|1} <
n|E{®c(k — 1,0)}Hlee < qnk™ 'pf, where || - ||; is the
maximum column sum matrix norm. Fix v € (pg, 1), from
Chebychev inequality, it follows that for all £ > 1,

P{[|[®c(k —1,0)[1 > v*} < By,

where B; = qnk" Y(po/v)F. Since > B < oo, by
Borel-Cantelli Lemma || ®c(k — 1,0)||; < »* for all but
finitely many k£ with probability one, which implies that
lim; 00 P (t,0) = 0 aus. [ ]

Lemma 4 (Lemma 4 in [8]): Consider a substochastic
matrix M € R™*™, If for every i, 1 < ¢ < n, there exists
an integer j, 1 < j < n, with the sum of j-th row less than
1 and a sequence of distinct integers k1 = ¢, ka,..., ky =
J, 1 < m < n, such that mpy, g, Mioks = Mk, 1k, > 0,
then p(M) < 1.
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